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Abstract— In digital communications, the symbol timing es-
timation is an very important element for high quality data
detection. This paper considers the problem of joint symbol
detection and timing estimation, whose optimal solution is an-
alytically intractable. In this paper, a stochastic M -algorithm
is proposed for the solution. The stochastic M -algorithm is a
novel efficient particle filtering algorithm designed for the discrete
unknowns. To accommodate in the stochastic M -algorithm the
continuous unknown symbol timing, the unscented Kalman filter
is introduced, which leads to very efficient implementation. The
simulation results illustrated that the stochastic M -algorithm
achieves similar performance as particle filtering with only less
than 1/25 of the complexity.

I. INTRODUCTION

In digital communications, data transmission experiences
distortion due to the transmission channel. The data detection
performance at the receiver strongly depends on the quality
of the estimation of channel parameters, such as the symbol
timing, the carrier phase, and the channel gain. We focus our
attention in this paper on joint data symbol detection and
timing estimation.

Timing recovery is a nonlinear problem whose optimal
solution is analytically intractable. The symbol timing is also
varying constant with time, and the requirement to track
its variation adds an additional difficulty to timing recovery.
In the past, suboptimal adaptive estimation techniques have
been reported in the literature. The extended Kalman filter
(EKF) was proposed in [1], which approximates the nonlinear
estimation problem with a linear solution. The unscented
Kalman filter (UKF) was proposed in [2], which approximates
the nonlinearity with an unscented transform and was shown to
achieve improved results. However, there, for timing recovery,
data symbols are assumed to be known, but in practice, joint
symbol detection is required. The optimal joint solution re-
quires calculation on all the combination of symbols over time,
a formidable task with complexity exponentially increase with
time. To reduce the complexity, decision-directed schemes are
often adopted, whose performance is, however, limited by
error propagation, an inherent shortfall of the decision-directed
detection.

Recently, particle filtering, or sequential Monte Carlo sam-
pling was applied to joint symbol detection and timing re-
covery [3]. In a particle filtering solution, a set of properly

weighted samples, which approximate the desired posterior
distribution, is generated sequentially over time. A prominent
feature of particle filtering is that the optimal solution to
problem can be approximated easily with the weighted sam-
ples with high accuracy. In addition, particle filtering provides
soft information about the unknowns, which can be used
for iterative processing. Nevertheless, the high computation
complexity of particle hinders its practical implementation.

In [4], a new particle filtering algorithm, called the stochas-
tic M-algorithm (SMA) is proposed for problems with the
discrete unknowns. For detection in BLAST systems, the SMA
is shown to provide better performance than the generic parti-
cle filtering solution with much less complexity. Motivated
by the appealing feature of the SMA, we propose in this
paper a novel solution under the SMA framework for joint
symbol detection and timing estimation. To accommodate in
the SMA the continuous unknown symbol timing, the UKF is
introduced, which leads to very efficient implementation. The
simulation results illustrated that the SMA achieves similar
performance as particle filtering with only less than 1/25 of
the complexity.

The remaining of the paper is organized as follows. Section
II describes the system model. The proposed algorithm is
developed in Section III. In Section VI, simulation results are
presented. Finally, conclusions are drawn in Section IV.

II. PROBLEM FORMULATION

Consider digital signals transmitted over a communication
channel. The received signal envelope has the following form
[3]:

y(t) =
∞∑

n=0

sng(t − nT + τ(t))ej(θ+ωt) + v(t) (1)

where {sm} represents the BPSK modulated symbols trans-
mitted during the nth symbol period, g(t) is the modulation
pulse waveform, T is the symbol period, τ(t) is the time vary-
ing delay, θ and ω are the carrier phase and carrier frequency
offsets, respectively, and v(t) is the complex additive white
Gaussian noise with 0 mean and the power spectrum density
N0/2.

Let us assume that g(t) is a causal pulse with finite duration
(i.e., the raised cosines with finite duration), which happens
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in practice due to the use of truncated Nyquist pulse. Then
we can write the equivalent discrete-time signal model after
sampling as [3]

yk =
k∑

n=k−L

sng(kTs − nT + τk)ejθej 2π
Ns

kν + vk (2)

where L + 1 is the intersymbol interference (ISI) span (L <
M ), Ts is the sampling period, (for convenience, set Ts =
T ), yk = y(kTs), vk = v(kTs), τk = τ(kTs), and ν is the
normalized frequency offset.

The variation of the timing delay can be modeled using a
first order AR process [5]

τk = aτk−1 + uk (3)

where a is the known model coefficient and uk is the Gaussian
noise with zero mean and the variance σ2

u.
In this paper, we only focus on the situation that the symbols

and the delays are unknown and we thus assume that the
carrier phase and the frequency offsets are given. Under the
above assumption, we can express the system in a more
compact format through a dynamic state space model (DSSM)⎧⎨

⎩
τk = aτk−1 + uk state equation
sk = Ssk−1 + dk state equation
yk = s�k g(τk) + vk observation equation

(4)

where sk = [sk−L, sk−L+1, ..., sk]�, g(τk) = [g(LT +
τk), g((L − 1)T + τk), ..., g(τk)]�, d = [0�, sk]�,

S =
[

0 IL

0 0�

]

0 is an L × 1 vector of zeros, and IL is an L × L identity
matrix.

Based on this dynamic state space model, our objective is
to sequentially estimate symbols sk and timing delays τk from
the observations y0:k, a collection of the observations from y0

to yk. Note from (2) that τ is nonlinear.
To form the solution, we adopt the maximum a posteriori

(MAP) criterion, i.e.,

{ŝk, τ̂k} = arg max
sk,τk

p(sk, τk|y0:k) (5)

III. THE STOCHASTIC M -ALGORITHM

In this paper, we consider a stochastic M -algorithm for
obtaining the MAP solution.

A. The optimal solution

To calculate the MAP solution, the posterior distribution
p(sk, τk|y0:k) is required, which can be obtained by marginal-
izing of the joint posterior distribution p(s0:k, τ0:k|y0:k) over
s0:k−1 and τ0:k−1, i.e.,

p(sk, τk|y0:k) =
∑

s0:k−1

∫
τ0:k−1

p(s0:k, τ0:k|y0:k)dτ0:k−1 (6)

where s0:k and τ0:k are the respective collections of the sym-
bols and the timing delays. However, no analytical expression

of p(sk, τk|y0:k) is available. It is because that, firstly, the joint
posterior distribution p(s0:k, τ0:k|y0:k) is obtained by

p(s0:k, τ0:k|y0:k)

=
p(yk|sk, τk)p(sk, τk|sk−1, τk−1)

p(yk|y0:k−1)
p(s0:k−1, τ0:k−1|y0:k−1)

=
p(yk|sk, τk)p(τk|τk−1)p(sk|sk−1)

p(yk|y0:k−1)
·

p(s0:k−1, τ0:k−1|y0:k−1)
∝ p(yk|sk, τk)p(τk|τk−1)p(s0:k−1, τ0:k−1|y0:k−1) (7)

where the second equality is arrived since sk is independent
from τk. When k increases, the computation for (7) increases
exponentially. Also, due to the nonlinearity of τ , the analytical
expression of (7) cannot be obtained. Second, notice from
(6) that the marginalization requires multiple summation and
high dimensional integration. The multiple summation has
a complexity increasing exponentially with k, and the high
dimensional integration is analytically unattainable due to the
nonlinearity in τ . As a result, the exact MAP solution is
prohibited. We then resort to a random numerical method
known as the stochastic M -algorithm.

B. The Stochastic M-algorithm

The stochastic M -algorithm is a very efficient particle fil-
tering algorithm designed for problems with discrete variables.
Like all particle filtering algorithms, the SMA approximates
the joint posterior distribution p(s0:k, τ0:k|y0:k) with a discrete
random measure represented by a set of 2M samples, or trajec-
tories, and weights, {s(m)

0:k , w
(m)
0:k }2M

m=1, and the approximation
can be expressed by

p(s0:k, τ0:k|y0:k) ≈
2M∑

m=1

w
(m)
k δ(s0:k − s

(m)
0:k )δ(τ0:k − τ

(m)
0:k )

(8)
where δ(·) is the Dirac delta function. The MAP solution (5)
can be then obtained by

{ŝk, τ̂k} = {s(J)
k , τ

(J)
k } (9)

where J = arg maxm∈{1,···,2M} w
(m)
k .

To calculate the MAP solution, the weights and the sam-
ple trajectories are needed. To this end, the SMA follows
the particle filtering framework using the idea of sequential
importance sampling. To put the notion on firmer ground,
let us assume that, at time k − 1, we have obtained M tra-
jectories {s(m)

0:k−1, τ
(m)
0:k−1}M

m=1 and the corresponding weights

{w(m)
k−1}M

m=1 that approximate the joint posterior distribution
p(s0:k−1, τ0:k−1|y0:k−1). At time k, we produce totally 2M
samples, two samples from each trajectory, and particularly
for the two from the mth trajectory, we assign s

(2m−1)
k = +1

and s
(2m)
k = −1. In addition, we obtain τ

(2m−1)
k and τ

(2m)
k

deterministically from the UKF, the detail of which will be
discussed in section III-C. In the context of particle filtering
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[6], the two samples can be considered from the following
importance functions

π(sk, τk|s(m)
0:k−1, τ

(m)
0:k−1, y

(m)
0:k )

= δsk,1δsk−1,s
(m)
k−1

· · · δ
sk−L,s

(m)
k−L

δ(τk − τ
(2m−1)
k ) (10)

and

π(sk, τk|s(m)
0:k−1, τ

(m)
0:k−1, y

(m)
0:k )

= δsk,−1δsk−1,s
(m)
k−1

· · · δ
sk−L,s

(m)
k−L

δ(τk − τ
(2m)
k ) (11)

where δi,j is the Kronecker delta function. Note that the ‘sam-
pling’ procedure is completely deterministic, and no random
sampling is actually performed. By far, we have obtained
2M updated trajectories {s(m̄)

0:k , τ
(m̄)
0:k }2M

m̄=1, where s(m̄)
0:k−1 =

s(m)
0:k−1 and τ

(m̄)
0:k−1 = τ

(m)
0:k−1 for m̄ = 2m − 1 and 2m. The

corresponding weights can be then calculated according to
particle filtering as

w
(m̄)
k ∝ w

(m̄)
k−1p(yk|s(m̄)

k , τ
(m̄)
k )p(s(m̄)

k |s(m̄)
k−1)p(τ (m̄)

k |τ (m̄)
k−1)

(12)
where w

(m̄)
k−1 = w

(m)
k−1 for m̄ = 2m − 1 and

2m, p(yk|s(m̄)
k , τ

(m̄)
k ) ∼ N ((s(m̄)

k )� · g(τ (m̄)
k ), N0/2),

p(s(m̄)
k |s(m̄)

k−1) = 0.5, and p(τ (m̄)
k |τ (m̄)

k−1) ∼ N (a·τ (m̄)
k−1, σ

2
u). It is

necessary to note that the importance function does not appear
in the weight calculation. It is because that it carries the same
value for all the trajectories and therefore can be removed after
normalization. The normalized weights are attained from

w
(m̄)
k =

w
(m̄)
k∑2M

m̄=1 w
(m̄)
k

(13)

With these 2M trajectories and the weights, we can obtain the
MAP solution from (9).

Finally, a random selection scheme is performed to choose
M from a total 2M trajectories. The selection is necessary
since otherwise the number of trajectories will increase ex-
ponentially. We want to emphasize that the selection is a
sampling-without-replacement process, i.e., no replicate of
trajectories will be produced after selection. Thus, the popular
resampling schemes such as the residual resampling are not
suited. Here, we use the optimal resampling algorithm [7].
The optimal resampling is a sampling-without-replacement
algorithm, and it is optimal in the sense that the mean square
error between the original weights and the sampled weights is
minimized.

The proposed SMA can be now summarized in the
following chart

At the kth symbol time,
• Trajectory expansion

For m = 1 to M

– Set s
(2m−1)
k = 1 and calculate τ

(2m−1)
k by UKF

based on s(2m−1)
k and s(m)

0:k−1.

– Set s
(2m)
k = −1 and calculate τ

(2m)
k by UKF based

on s(2m)
k and s(m)

0:k−1.

• Calculate the weights w
(m̄)
k by (12) and normalize them

according to (13).
• Obtain the MAP solution according to (9).
• Trajectory selection

Select M trajectories from 2M trajectories using the
optimal resampling algorithm.

We want to also point out that the SMA algorithm starts at
k = �log2M�, where �x� denotes the rounding-off operation
on x. We have initially 2k trajectories, each of which
contains one possible combination of the first k symbols
and an estimate of τ based on the symbol combination.
The corresponding initial weights are the joint posterior
distribution evalued at the initial samples. This measure
coupled with the SMA algorithm guarantees that no two
trajectories will be the same at any time k, which is however
hardly true with particle filtering. This distinct feature implies
that the SMA carries more diversity for a given M than
the generic particle filtering. As a result, the SMA is more
efficient. Further, since no random sampling is involved, the
SMA has less complexity.

C. Timing estimation using the unscented Kalman filter

In this section, we briefly describe the steps for obtaining
samples for τk. At time k, based on each trajectory, say
{s(m)

0:k−1, τ
(m)
0:k−1} and s(2m)

k , our objective is to obtain an
estimate and use it as the sample for τk. The problem is
equivalent to the parameter estimation in a nonlinear DSSM,
and we obtain the estimate using the UKF [8]. For convenience
of composition, we drop the superscript (m̄) in the proceeding
discussion.

In the UKF, the analytical intractable posterior distribution
of τk is approximated by a set of appropriately weighted sigma
points obtained through the unscented transformation. The
advantage is that the use of sigma points permits the accurate
propagation of the mean and the variance of τk through the
nonlinear equation (4) in a computationally efficient manner.
Refer to [9], [10] for more detailed discussion on the topic.

The estimation of τk by the UKF is also proceeded in an
iterative fashion. At time k, base on the estimate τ̄k−1 and its
variance Pk−1 obtained at time k− 1, we first define a vector
Xk−1 =

[
τ̄k−1 τ̄k−1 + γ

√
Pk−1 τ̄k−1 − γ

√
Pk−1

]
where

γ is a pre-defined constant by the UKF. We then perform a
prediction step on τk by

τ̄k|k−1 =
3∑

i=1

W
(mean)
i Xi,k|k−1

and

Pk|k−1 =
3∑

i=1

W
(mean)
i

(Xi,k|k−1 − τ̄k|k−1

)2 + σ2
u

where Xi,k|k−1 = aXi,k−1 with Xi,k−1 being the ith element

of Xk−1, and W
(mean)
i s are the parameters defined in the UKF.

The estimate of τ can thus be obtained from the measurement
steps as

τ̄k = τ̄k|k−1 + Kk(yk − ȳk|k−1) (14)
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Fig. 1. BERs as functions of SNR

where Kk = Pτkyk
P−1

ykyk
, Pykyk

=
∑3

i=1 W
(cov)
i

(Yi,k|k−1 −
ȳk|k−1

)2 +N0/2, Pτkyk
=

∑3
i=1 W

(cov)
i

(Xi,k|k−1− τ̄k|k−1

)2
,

ȳk|k−1 =
∑3

i=1 W
(mean)
i s�k g(Xi,k|k−1), and W

(cov)
i s are

again parameters defined in the UKF.

IV. SIMULATION RESULTS

We demonstrate in this section the performance of the pro-
posed SMA through simulations. In the simulation, a system
with BPSK modulation, ISI span of L+1 = 3, and the raised
cosine pulse with roll-off factor of 0.7 was used. In addition,
in the time delay AR model, the coefficient a was set to be
0.999, and σ2

u is 10−5.
We compared the performance of the SMA with M = 2

with particle filtering with 50 samples [3]. In particle filtering,
τks and sks are attained according to the minimum mean
square error criterion. Figure 1 demonstrates the symbol
detection performance of the two algorithms using the bit error
rates (BER) at signal-to-noise (SNR) from 2 dB to 10 dB. It is
obvious that the SMA performs closely with particle filtering
and even a little better at high SNR. Note that the complexity
of the SMA is less 1/25 of particle filtering.

We also show in Figure 2 the mean squared error (MSE)
of the estimates obtained by the two algorithms. Similar rela-
tionship as in the symbol detection performance is observed.
Again, SMA can achieve smaller MSE in high SNR region.

Finally, we depict in Figure 3 the tracking ability of SMA on
τ at two different SNRs. We see that the tracking performance
improves with the increase of SNR, and at SNR=10 dB, the
SMA can track symbol timing accurately.

V. CONCLUSIONS

In this paper, we proposed to solve joint symbol detection
and timing estimation with the stochastic M -algorithm. Our
simulation results showed that the stochastic M -algorithm
attains the performance of particle filtering, but with signif-
icantly reduced complexity.
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