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ABSTRACT

Accurate estimation of synchronization parameters is a fundamen-
tal issue in digital transmission. In this paper, we investigate a
novel approach to joint synchronization and blind data detection in
frequency non-selective fast fading channels based on the applica-
tion of sequential Monte Carlo (SMC) techniques. The algorithm
is derived by modeling the transmission process as a dynamic sys-
tem where the channel parameters and the transmitted symbols are
unobserved state variables. The performance of the proposed tech-
nique is studied through computer simulations that illustrate the
accuracy of timing recovery and the overall performance of the
resulting receiver in terms of its Symbol Error Rate (SER).

1. INTRODUCTION

There are many practical scenarios where the wireless link can be
accurately represented by a frequency non-selective, fast fading
channel model which is tied to a set of well-defined physical
parameters, namely the received signal attenuation, its relative
delay and the carrier frequency and phase offsets. The generalized
synchronization problem [1] is a fundamental issue in digital
receiver design that consists of the recovery of the physical
parameters using the observed signal, and can be interpreted as
a particular case of equalization in which the physical channel
structure is fully exploited.

Most existing synchronization techniques are based on
approximate maximum likelihood arguments [1, 2], because
optimal estimators for the parameters of interest are analytically
intractable. The sequential Monte Carlo (SMC) methodology
(commonly referred to as particle filtering) [3] is a powerful
tool that can be applied in this context as it provides a means
for numerically computing (optimal) Bayesian estimators when
closed-form solutions are intractable.

In this paper, we propose the application of particle filtering
for blind timing recovery and data detection in a fast fading,
frequency-flat wireless channel. The channel time-selectivity is
accounted for by modeling the relative delay of the received signal
as a first order autoregressive (AR) process [4], while the fading
process of the channel is modeled as second order AR, driven by
complex white Gaussian noise [5]. These statistical assumptions
allow the representation of the communication process as a
dynamic system in state-space form that lends itself to the
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application of an SMC algorithm for joint timing recovery and data
detection which operates in a blind manner, i.e., without requiring
the transmission of pilot data.

The remaining of the paper is organized as follows. Section 2
introduces the signal model and the state-space representation of
the communication system. The proposed algorithm is introduced
in Section 3, and subsequently applied to design of a closed-loop
blind receiver in Section 4. Section 5 presents illustrative computer
simulation results and, finally, Section 6 is devoted to conclusions.

2. SIGNAL MODEL

Let us consider a digital communication system that transmits
symbols, {sk}, from a finite alphabet in frames of length K over a
non-dispersive time-selective channel. The discrete-time received
signal obtained after matched filtering and symbol rate sampling
can be compactly written as

yk = hks
�
k g(τk, ωk) + vk, (1)

where hk is the complex channel fading process, sk =
[sk−L, ..., sk]� is an (L + 1) × 1 symbol vector, and gk is an
(L + 1) × 1 vector defined by

g(τk, ωk) = ejωkk [g(LT + τk), g((L − 1)T + τk), . . . , g(τk)]�

and it represents the discrete-time joint response of the transmit
and receive filters (assumed causal), which depends on the relative
symbol delay, 0 ≤ τk < T , and the carrier frequency offset,
ωk, and vk is an additive white Gaussian noise (AWGN) process.
Note that due to imperfect timing, the received signal suffers from
Inter-Symbol Interference (ISI), with a spread of L + 1 symbols
(sk−L, . . . , sk).

In order to apply particle filtering, we model the
communication process as a dynamic system. This is easily done
by using (1) as an observation equation and defining the dynamic
system state in order to include the transmitted data, the relative
delay and the channel fading process. In the sequel, we assume
for simplicity that there is no carrier frequency offset, ωk = 0,
although it is straightforward (but notationally cumbersome) to
include it in the proposed algorithm.

We need to specify the dynamics of the state variables.
Following [4], we model the symbol-timing by a slowly varying
first order AR process driven by white Gaussian noise,

τk = aτk−1 + uk (2)
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where 0 < a < 1, and uk ∼ N (0, σ2
u). The values of a and σ2

u

depend on the transmitter and receiver timing jitter. It is usually
acceptable to set a close to one and a very small σ2

u [4].
Similarly, the variation of the fading coefficient, hk, is

modeled by a second order AR process driven by a complex white
Gaussian process [5],

hk = γ1hk−1 + γ2hk−2 + ek (3)

where the values of the coefficients, γ1 and γ2, and the variance of
the zero-mean complex white Gaussian noise ek are functions of
the fading rate of the channel.

Using equations (1), (2) and (3), and assuming zero frequency
offset, we obtain the dynamic model

τk = aτk−1 + uk

hk = Ahk−1 + fek

sk = Ssk−1 + dk

⎫⎬
⎭ state eq. (4)

yk = hks
�
k g(τk) + vk observation eq. (5)

where hk = [hk, hk−1]
�, f = [1 0]�, A =

[
γ1 γ2

1 0

]
, S is

an (L + 1) × (L + 1) shifting matrix that verifies

S[sk−L, . . . , sk−1, sk]� = [sk−L+1, . . . , sk, 0]�,

dk = [0, . . . , 0, sk]� is an (L + 1) × 1 perturbation vector
that contains the new symbol, and g(τk) = g(τk, ωk = 0).
The system state at time k is given by (sk,hk, τk), while
the parameters a, σ2

u, σ2
v , γ1, γ2, σ2

e and L are assumed
fixed and known. We focus on the joint estimation of the
symbols, s0:M−1 = {s0, . . . , sM−1}, and the delays, τ0:M−1 =
{τ0, . . . , τM−1} from the available observations, y0:M−1 =
{y0, . . . , yM−1}. Note that the channel complex fading process
h0:M−1 = {h0, . . . , hM−1} is a nuisance process, and we will try
to avoid its explicit estimation.

3. A PARTICLE FILTER FOR JOINT DATA DETECTION
AND TIMING RECOVERY

3.1. Particle filtering

We are interested in the sequential estimation of the transmitted
data and the symbol timing. From Bayesian perspective, all
information is contained in the a posteriori probability distribution
function (PDF), p(s0:k, τ0:k|y0:k), which is, unfortunately,
analytically intractable. Hence, we propose to use particle
filtering, which is an emerging signal processing tool for
numerically computing Bayesian estimates. A particle filter
approximates a desired PDF by means of a discrete measure with
a random support. Specifically, the distribution p(s0:k, τ0:k|y0:k)
can be approximated by N sample trajectories (particles) as

p̂(s0:k, τ0:k|y0:k) =
N∑

n=1

δ(n)(s0:k, τ0:k)w
(n)
k ,

where s0:k and τ0:k are sample trajectories of the data and the
delays, respectively, while w

(n)
k are weights associated to the

particles, and δ(·) denotes the Dirac’s delta function,

δ(n)(s0:k, τ0:k) =

{
1, if s0:k = s

(n)
0:k , τ0:k = τ

(n)
0:k

0, otherwise
.

Using the approximated posterior PDF, Bayesian estimates can
easily be computed. For online processing, we usually wish to
work with the marginal Minimum Mean Square Error (MMSE)
estimate of the delay,

τ̂mmse
k =

N∑
n=1

τ
(n)
k w

(n)
k , (6)

and the marginal Maximum A Posteriori (MAP) estimate of the
data,

ŝmap
k = arg max

sk

{
N∑

n=1

δ(sk − s
(n)
k )w

(n)
k

}
.

3.2. Sequential Importance Sampling

Most particle filtering methods rely upon the principle of
Importance Sampling (IS) [3] for building an empirical
approximation of a desired PDF (say p(x)) by drawing samples
from a different distribution, known as importance function or
proposal PDF (denoted π(x)). These samples are then assigned
appropriate normalized importance weights, i.e.,

x(n) ∼ π(x)

w(n) ∝ p(x(n))

π(x(n))
.

where
∑N

n=1 w(n) = 1. For the problem at hand, we wish
to approximate p(s0:k, τ0:k|y0:k), hence we need an importance
function of the form π(s0:k, τ0:k|y0:k).

One of the most appealing features of the particle filtering
approach is its potential for online processing. Indeed, the IS
principle can be sequentially applied by exploiting the recursive
decomposition of the posterior distribution

p(s0:k, τ0:k|y0:k) ∝ p(yk|s0:k, τ0:k, y0:k−1)p(τk|τk−1)

×p(s0:k−1, τ0:k−1|y0:k−1), (7)

which is easily derived by taking into account the a priori uniform
PDF of the symbols, and an adequate importance function that can
be factored as

π(s0:k, τ0:k|y0:k) = π(sk, τk|sk−1, τk−1, yk)

×π(s0:k−1, τ0:k−1|y0:k−1). (8)

The recursive algorithm that combines the IS principle and the
decompositions (7) and (8) to build a particle filter approximation
of the posterior PDF is called Sequential Importance Sampling

(SIS) [3]. Let Ωk =
{
(s0:k, τ0:k)(n), w

(n)
k

}N

n=1
denote the

particle filter at time k. When a new observation is collected at
time k + 1, the SIS algorithm proceeds as follows to recursively
compute Ωk+1:

1. Importance sampling:

(sk, τk)(n) ∼ π(sk, τk|s(n)
k−1, τ

(n)
k−1, yk)

2. Weight update:

w̃
(n)
k = w

(n)
k−1

p(yk|s(n)
0:k , τ

(n)
0:k , y0:k−1)p(τ

(n)
k |τ (n)

k−1)

π(s
(n)
k , τ

(n)
k |s(n)

k−1, τ
(n)
k−1, yk)
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3. Weight normalization:

w
(n)
k =

w̃
(n)
k∑N

i=1 w̃
(i)
k

It can be shown that the particle filter computed with the SIS
algorithm converges to the desired posterior PDF for a sufficiently
large number of particles [6], i.e.,

p̂(s0:k, τ0:k|y0:k)
N→∞−→ p(s0:k, τ0:k|y0:k).

3.3. Computation

The proposed SIS algorithm requires the numerical evaluation
of the likelihood function in the weight update equation. It is
straightforward to show that

p(yk|s0:k, τ0:k, y0:k−1) =

∫
hk

p(yk|sk, τk,hk)

×p(hk|s0:k−1, τ0:k−1, y0:k−1)dhk,

(9)

where

p(yk|sk, τk,hk) = N (yk; hkg
�(τk)sk, σ2

v)

and

p(hk|s0:k−1, τ0:k−1, y0:k−1) = N (hk; µk|k−1,Σk|k−1)

are Gaussian PDFs. The predictive channel mean,

µk|k−1 = Ep(hk|s0:k−1,τ0:k−1,y0:k−1)hk,

and its predictive covariance matrix, Σk|k−1, can be computed
using a Kalman filter. Therefore, the integral in (9) can be solved
to yield the expression in eq. (10) (shown at the top of next page),
where µk|k−1 is the first component of µk|k−1 and Σk|k−1 is the
element from the first row and first column of Σk|k−1.

As for the importance function, at time k we choose

(s
(i)
k , τ

(i)
k ) ∼ πk(sk, τk) = p(sk|s(i)

0:k−1, τk, τ
(i)
0:k−1, y0:k)

×p(τk|τ (i)
k−1), (11)

which can be sampled in two steps. First, we obtain a new delay
particle according to

τ
(i)
k = N (aτ

(i)
k−1, σ

2
u).

Then, a sample of the transmitted symbol is obtained from the first
density on the right hand side of (11). This is feasible because we
can rewrite p(sk|s(i)

0:k−1, τ
(i)
0:k, y0:k) as

p
(
sk = S|s(i)

0:k−1, τ
(i)
0:k, y0:k

)
∝ p

(
yk|sk = S, s

(i)
0:k−1, τ

(i)
0:k, y0:k−1

)
,

(12)
where S ∈ A is a symbol in the modulation alphabet, A.
Notice that the likelihood on the right hand side of (12) can
be evaluated using equation (10). The resulting importance
weights of the new particles are shown in equation (13), where
s
(i)
k,j = [s

(i)
k−L, . . . , s

(i)
k−1, sk = Sj ]

�, and µ
(i)

k|k−1 and Σ
(i)

k|k−1 are
the predictive channel mean and covariance matrix, respectively,

obtained by Kalman filtering from the observations and the i-th
state trajectory, (s0:k−1, τ0:k−1)

(i).
It is important to remark that the implementation of the

proposed SIS algorithm requires a bank of Kalman filters (one
for each particle) in order to compute the fading process
statistics that are needed for the importance PDF and the weight
update equation. The combination of the SIS algorithm and
Kalman filtering has already been applied to other communication
problems and is sometimes termed Mixture Kalman Filter (MKF)
[7].

3.4. Resampling

One major problem in the practical implementation of the SIS
algorithm is that, after few time steps most of the trajectories
have importance weights with negligible values (very close to
zero). The common solution to this problem is to resample
the particles. Resampling is algorithmic step that stochastically
discards particles with insignificant weight while replicating the
ones with significant weight. In its simplest form, the scheme
generates N new trajectories {s0:k, τ0:k}N

i=1 having weights equal
to 1/N by drawing samples from the trajectories with probability
w

(i)
k .

4. BLIND RECEIVER

The SIS algorithm described above simply obtains the joint
estimate of the transmitted symbols and their relative delays.
The symbol error rate (SER) of the proposed scheme can be
significantly improved if ISI is removed from the observed signal
using the delay estimates provided by the particle filter. This can
be achieved by considering the closed-loop receiver architecture
depicted in Figure 1.

τ kt=kT− τ k

ks

τ k

SMC

prediction

y(t)
y

z

k

−1

Fig. 1. Closed-loop architecture

The SMC block represents the SIS algorithm with resampling
described in the previous section. In the closed-loop receiver, the
(asymptotically optimal) MMSE estimate of the relative symbol
delay at time k, τ̂mmse

k , obtained according to (6), is fed back
and used to adjust the sampling epoch of the next observation.
Therefore, instead of sampling the received signal uniformly, to
obtain yk = y(kT ), the sampling time is adaptively adjusted
according to the most recent estimate of the relative symbol delay,
to yield yk = y(kT − τ̃k) where τ̃k = aτ̂mmse

k−1 is the MMSE
prediction of τk according to the observations up to time k − 1.

The observation collected in this way has the form

yk = hks
�
k g(τk − τ̃k) + vk.

If τ̃k � τk, the resulting observation, yk, is free of ISI and the
corresponding symbol estimates attain (asymptotically) minimal
SER.
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p(yk|s0:k, τ0:k, y0:k−1) = N
(

yk;g�(τk)skµk|k−1, σ
2
v +

(
g�(τk)sk

)2

Σk|k−1

)
(10)

w
(i)
k ∝ w

(i)
k−1

∑
Sj∈A

N
(

yk;g�(τ
(i)
k )s

(i)
k,jµ

(i)
k|k−1, σ

2
v +

(
g�(τ

(i)
k )s

(i)
k,j

)2

Σ
(i)
k|k−1

)
(13)

5. SIMULATION RESULTS

We now present computer simulations that illustrate the validity of
our approach. We have considered a differential encoded binary
modulation with symbol alphabet {±1}, and a flat fading channel
with a fading rate 0.022 which corresponds to vehicle velocity
of v = 75 miles per hour, carrier frequency of fc = 2 GHZ
and symbol period of T = 10−4. The delay was modeled as a
first order autoregressive process with parameter a = 0.999 and
noise variance σ2

u = 3 × 10−4. A time-limited causal raised-
cosine pulse with a roll-off factor α = 0.7 yielding an ISI spread
of L + 1 = 3 symbols was used. The algorithms were run for
N = 300 particles.
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Fig. 2. SER as a function of SNR.

Figure 2 depicts the Symbol Error Rate (SER) for several
values of the Signal-to-Noise Ratio (SNR). The proposed
algorithm is compared with two genie-aided particle filters, as well
as with the optimal detector (perfect timing and known channel).
Figure 3 illustrates the ability of the proposed algorithm to track
the time varying delay, τk, in a single simulation with SNR=
25 dB.

6. CONCLUSIONS

We have introduced a novel algorithm for blind timing recovery
and data detection in fast fading, frequency non-selective wireless
channels. The resulting receiver numerically performs the
(asymptotically optimal) Bayesian estimation of the transmitted
symbols and their delays using the particle filtering methodology.
The algorithm is fit to a closed-loop structure that allows to
adaptively adjust the timing epoch in order to suppress the ISI.
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Fig. 3. Actual and estimated delay, τ , for SNR = 25 dB.

Computer simulations are presented that illustrate the new receiver
performance in terms of timing recovery and SER.

7. REFERENCES

[1] U. Mengali and A. N. D’Andrea, Synchronization Techniques
for Digital Receivers, Plenum Press, 1997.

[2] G. Vázquez and J. Riba, “Non data-aided digital
synchronization,” in Signal Processing Advances in Wireless
Communications. Trends in Single and Multi-User Systems
(Vol. II), G. B. Giannakis and Y. Hua, Eds., chapter 9. Prentice-
Hall, 2000.

[3] A. Doucet, N. de Freitas, and N. Gordon, “An introduction to
sequential Monte Carlo methods,” in Sequential Monte Carlo
Methods in Practice, A. Doucet, N. de Freitas, and N. Gordon,
Eds., chapter 1, pp. 4–14. Springer, 2001.

[4] R. Iltis, “Joint estimation of PN code delay and multipath
using the extended Kalman filter,” IEEE Transactions
Communications, vol. 38, pp. 1677–1685, October 1990.

[5] M.J Omidi, S. Pasupathy, and P.G. Gulak, “Joint data and
kalman estimation for rayleigh fading channels,” Wireless
Personal Communication, , no. 10, pp. 319–339, 1999.

[6] D. Crisan and A. Doucet, “A survey of convergence results on
particle filtering,” IEEE Transactions Signal Processing, vol.
50, no. 3, March 2002.

[7] R. Chen, X. Wang, and J. S. Liu, “Adaptive joint detection and
decoding in flat-fading channels via mixture kalman filtering,”
IEEE Transactions Information Theory, vol. 46, no. 6, pp.
2079–2094, September 2000.

IV - 840

➡ ➠


