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ABSTRACT

This paper presents a cyclostationary approach to the Non-Data-
Aided (NDA) phase and timing estimation problem for staggered
modulations. The problem is addressed under the low-SNR Un-
conditional Maximum Likelihood (UML) framework, and modu-
lations such as Offset Quadrature Amplitude Modulation (OQAM)
and Minimum Shift Keying (MSK) are considered. In this sense, it
is found that not only the timing parameter but also the phase, can
be jointly obtained from the asymptotic UML cost function based
on the spectral line generation after a second-order non-linearity.

1. INTRODUCTION

Staggered or offset modulations belong to the class of bandwidth
efficient modulations, providing a good ratio between the transmit-
ted data rate and the required bandwidth. The main difference with
respect to classical linear modulations is that the in-phase and the
quadrature data streams are not time aligned. In particular, stag-
gered modulations usually introduce a delay in the quadrature data
stream of half the symbol period, which results in smoother phase
transitions that restrict the envelope variations. This fact solves
most of the problems encountered by modulations when passing
through non-linear devices such as Travelling Wave Tubes (TWT),
which generate out-of-band interference when the incoming signal
envelope collapses to zero (see [1]-[2] and the references therein).

In this paper, we investigate in a systematic way the Non-Data-
Aided (NDA) joint phase and timing estimation problem for the
case of staggered modulations. In this sense, we consider stag-
gered modulations such as Offset Quadrature Amplitude Modu-
lation (OQAM) or Minimum Shift Keying (MSK), the latter be-
ing equivalent to an staggered modulation with a sinusoidal pulse
shape [2]. The study presented herein is closely related to the
one presented in [3], with the difference that here, the exploitation
of the cyclostationary property leads us to an estimator which is
asymptotically based on the spectral line generation from a second-
order non-linearity. Therefore, this scheme can be thought as an
extension for staggered modulations of the well-known Square
Timing recovery method by Oerder & Meyr (O&M) [4].

The paper is structured as follows: Section 2 introduces the
signal model and the problem statement in terms of the UML frame-
work. Next, Section 3 derives the likelihood cost function for
the phase and timing estimation by exploiting the cyclostationary
properties of the received signal, and presents the joint phase and
timing estimator. Section 4 presents some simulation results, and
finally, conclusions are drawn in Section 5.
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2. SIGNAL MODEL AND PROBLEM STATEMENT

The staggered modulations considered in this paper include the
time misalignment between the in-phase and the quadrature data
streams by an offset equal to half the symbol period. Although
some other offset values can be applied, this is the commonly
adopted in practice due to its optimum performance in terms of
phase jitter inmunity in the presence of Gaussian noise [5]. Thus,
the discrete-time signal model for a generic baseband staggered
modulation can be expressed as follows:

r(k) =
+∞∑

n=−∞

[
xR

n g (k − nNss − τ ) (1)

+ jxI
ng

(
k − nNss − Nss

2
− τ

) ]
ejθ + w (k)

where
{
xR

n , xI
n

}
stand for the in-phase and the quadrature sym-

bol streams, both assumed to be i.i.d and part of a real and finite
alphabet. The discrete-time pulse shape filter is denoted by g(k),
and is assumed to be band-limited. The discrete-time symbol pe-
riod is indicated by Nss samples per symbol, and finally, w (k) are
the complex additive white Gaussian noise (AWGN) samples with
zero mean and σ2

w variance, N (
0, σ2

w

)
. Regarding the synchro-

nization parameters, they comprise the discrete-time symbol tim-
ing error τ constrained within [−Nss/2, +Nss/2)

1, and the car-
rier phase error θ comprised within [−π, +π). Taking into consid-
eration an observation interval comprising L transmitted symbols,
it is possible to express the received signal in terms of a vector
comprising a total of M = NssL samples as follows:

r = A (Θ)xR + jJA (Θ)xI + w (2)

where r is the (M × 1) vector of received samples, A (Θ) is the
(M × L) signal shaping matrix given by (3), and Θ = [τ, θ]T .
The (L × 1) vectors {xR,xI} correspond to the in-phase and
quadrature transmitted symbols respectively, and the matrix J is
an (M × M) shift-matrix for modelling the Nss/2 offset in the
quadrature component. Finally, w is the (M × 1) AWGN vector.

[A (Θ)]p,q = g (p − qNss − τ ) ejθ (3)

[J]p,q =

{
1, p − q = Nss/2
0, p − q �= Nss/2

(4)

In the sequel, the notation ( · )T and ( · )H will be used for indi-
cating the transpose and conjugate transpose operation.

From the signal model in (2), the NDA parameter estimation
problem is here attempted under the Stochastic or Unconditional

1The equivalent continuous-time symbol period is T = NssTs, with
Ts the sampling period. Thus, the continuous-time symbol timing error is
denoted by τc , with τc ∈ [−T/2,+T/2).
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Maximum Likelihood (UML) framework [6]. This approach as-
sumes the transmitted symbols to be all random and yields asymp-
totically efficient and unbiased estimators. In particular, the Maxi-
mum Likelihood (ML) estimation problem for the AWGN channel
is based on maximizing the following Likelihood function:

Λ (r|Θ;x) = C1 exp

(
− 1

σ2
w

‖r − A (Θ)xR − jJA (Θ)xI‖2

)
(5)

with x = {xR,xI}, and C1 an irrelevant constant. Expanding the
above expression, and taking into consideration just those terms
with truly dependence on the unknown parameters, we have:

Λ (r|Θ;x) = C1 exp

(
− 2

σ2
w

χ (r;Θ;x)

)
(6)

χ (r;Θ;x) = Re
[
xR

T AHr
]

+ Im
[
xI

T AHJT r
]

(7)

where, for the sake of simplicity, the dependence of A with the
vector of unknown parameters Θ has been omitted in the notation.

The main drawback that we encounter is the dependence of
the Likelihood function on the transmitted symbols. In order to
overcome this problem, a common practice in the literature is the
assumption of a low-SNR scenario. This low-SNR approximation
is reasonable in nowadays communication systems (e.g. the range
of application for Turbo Codes), but in addition, it provides a ro-
bust performance of the estimators derived hereafter, as it assumes
a worst-case scenario. The low-SNR approach enables us to ex-
pand the Likelihood function in (6) into a Taylor series, in a way
that the expectation with respect to the transmitted symbols can
easily be performed [6]. Taking into consideration the expansion
up to the quadratic term, we have:

Λ (r|Θ;x) ≈ C1

[
1 − 2

σ2
w

χ (r;Θ;x) +
2

σ4
w

χ2 (r;Θ;x)

]
(8)

which is the basis for the subsequent derivations.

3. CYCLOSTATIONARITY EXPLOITATION FOR JOINT
PHASE AND TIMING ESTIMATION

The Likelihood function introduced in Section 2 can be further
simplified by exploiting the cyclostationary statistics (CSS) of the
received signal. This fact enables us to express the UML cost func-
tion in (8) in terms of the received signal Cyclic Autocorrelation
Function (CAF), providing a simple structure that can easily be
optimized with respect to the unknown synchronization parame-
ters [7]. Indeed, this is not a surprising fact, as several CSS-based
estimators found in the literature can also be interpreted as asymp-
totic ML estimators [8].

3.1. Cyclostationary Approach to the UML Cost Function

The exploitation of CSS for the problem under study requires us to
distinguish between the complex conjugate and the non-complex
conjugate CAF. In this sense, let Rα

x∗ (m) be the complex conju-
gate CAF, and Rα

x (m) the non-complex conjugate CAF of signal
x(k), evaluated at the cycle-frequency α and time-lag m. Simi-
larly to [9], we define:

Rα
x∗ (m) = lim

N→∞
1

N

N−1∑
k=0

x∗ (k) x (k + m) e−j2παk (9)

Rα
x (m) = lim

N→∞
1

N

N−1∑
k=0

x (k) x (k + m) e−j2παk (10)

with (·)∗ the complex conjugate operator.
Taking into consideration this distinction, we can recover the

Likelihood function in (8) to show the application of the above
definitions. First of all, the expectation with respect to the trans-
mitted symbols must be performed in (8) so as to obtain a purely
non-data-aided cost function, namely Λ (r|Θ) = Ex [Λ (r|Θ;x)].
When performing this expectation, we find that Ex [χ (r;Θ;x)] =
0, and thus:

Λ (r|Θ) ∝ Ex

[
χ2 (r;Θ;x)

]
(11)

By noting that the covariance matrix for the real-valued transmit-
ted symbols is E

[
xRxT

R
]

= E
[
xIxT

I
]

= σ2
xI, with σ2

x = 0.5,
we have:

Ex

[
χ2 (r;Θ;x)

]
=

1

4
Re

[
rT A∗AHr− rT JA∗AHJT r

]
+

1

4

(
rHAAHr + rHJAAHJT r

)
(12)

The structure provided by the outer product AAH has already
been investigated in [7] for a more general case including carrier
frequency uncertainty. There, it was shown that the terms along
the diagonals of matrix AAH can be asymptotically (M → ∞)
seen as a Fourier series expansion whose coefficients are given by
the transmitted pulse shape CAF. For the case under study, where
the carrier frequency error is not considered and the pulse shape is
band-limited, the m-th diagonal terms are then given by:[

AAH
]

k+m,k
=

M

Nss

+1∑
n=−1

R
1

Nss
n

g∗ (m) ej 2π
Nss

(k−τ)n (13)

In the case of non band-limited pulses (such as the rectangu-
lar pulse), more spectral lines should be considered. However, by
taking just the first spectral line at the frequency-lag α = 1

Nss
, we

often collect the most important contribution, and hence, it pro-
vides a reasonable approximation which leads to a simple imple-
mentation. Following this approach, the quadratic terms in the
form rHAAHr are found to be given, except for some negligible
constant factor, by [7]:

rHAAHr ∝ Re

[
e−j 2π

T
τc

+M∑
m=−M

[
R

1
Nss
g∗ (m)

]∗
R

1
Nss
r∗ (m)

]
(14)

Now, let y1(k) and y2(k) be the following matched filter outputs:

y1(k) = r(k) ∗ g(−k) (15)

y2(k) = r(k) ∗ g(−k + Nss/2) (16)

with ”∗” the convolution operator. Then, assuming a long enough
observation interval (M → ∞), it is found that (14) and the re-
maining terms in (12) can asymptotically be expressed for syn-
chronization purposes as:

rHAAHr = C2Re

[
e−j 2π

T
τcR

1
Nss
y1∗ (0)

]
(17)

rHJAAHJT r = C2Re

[
e−j 2π

T
τcR

1
Nss
y2∗ (0)

]
(18)

rT A∗AHr = C3e
−j2θ

[
e−j 2π

T
τcR

1
Nss
y1 (0) (19)

+ ej 2π
T

τcR
− 1

Nss
y1 (0)

]

rT JA∗AHJT r = C3e
−j2θ

[
e−j 2π

T
τcR

1
Nss
y2 (0) (20)

+ ej 2π
T

τcR
− 1

Nss
y2 (0)

]
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with C2 and C3 some irrelevant constants. It is important to re-
mark that the zero frequency-lag is not included in (17)-(20), as it
does not provide any information on the unknown synchronization
parameters. Moreover, due the Nss/2 time-offset of signal y2(k)

with respect to y1(k), a phase shift equal to e
−j 2π

Nss
( Nss

2 ) is in-
troduced in the CAFs corresponding to y2(k). In particular, we
have:

R
1

Nss
y2 (0) = −R

1
Nss
y1 (0) (21)

R
− 1

Nss
y2 (0) = −R

− 1
Nss

y1 (0) (22)

R
1

Nss
y2∗ (0) = −R

1
Nss
y1∗ (0) (23)

Hence, with (21)-(23), and ignoring the zero frequency-lag of the
CAF, we can state in (12) that:

rHAAHr + rHJAAHJT r = 0 (24)

and

rT A∗AHr− rT JA∗AHJT r = (25)

e−j(2θ+ 2π
T

τc)R
1

Nss
y1 (0) + e−j(2θ− 2π

T
τc)R

− 1
Nss

y1 (0)

Then, we just have to substitute (24)-(25) into (11)-(12) for ob-
taining that the asymptotic low-SNR UML cost function is given
by:

Λ (r|Θ) ∝ (26)

Re

[
e−j(2θ+ 2π

T
τc)R

1
Nss
y1 (0) + e−j(2θ− 2π

T
τc)R

− 1
Nss

y1 (0)

]
3.2. Asymptotic Joint Phase & Timing Estimation

There are some remarks to be made about the asymptotic Likeli-
hood cost function derived in (26). Firstly, this Likelihood func-
tion does not depend on the complex-conjugate CAF as usual (e.g.
as in the O&M algorithm), but on its non-complex conjugate ver-
sion. Secondly, the maximization of the Likelihood function must
be achieved by solving the following system equation:

2θ +
2π

T
τc = arg

{
R

1
Nss
y1 (0)

}
(27)

2θ − 2π

T
τc = arg

{
R

− 1
Nss

y1 (0)

}
(28)

By doing so, we easily find that the asymptotic UML joint phase
and timing estimator is then given by:

θ =
1

4

[
arg

{
R

1
Nss
y1 (0)

}
+ arg

{
R

− 1
Nss

y1 (0)

}]
(29)

τ =
T

4π

[
arg

{
R

1
Nss
y1 (0)

}
− arg

{
R

− 1
Nss

y1 (0)

}]
(30)

However, an asymptotically large number of received samples is
not available in practice. Thus, we must resort to estimating the
asymptotic CAF in (29)-(30) from a finite set of M received sam-
ples. In this sense, a consistent and efficient estimator for the non-
complex conjugate CAF is given by [10]:

R̂α
x (m) =

1

M

M−1∑
k=0

x (k) x (k + m) e−j2παk (31)

Thus, we can estimate Rα
y1 (0) in (29)-(30), namely R̂α

y1 (0), by
applying (32) at the cycle-frequencies α = ± 1

Nss
.

R̂α
y1 (0) =

1

M

M−1∑
k=0

(
r(k) ∗ g(−k)

)2

e−j2παk (32)

Fig. 1. Block diagram for the low-SNR UML joint phase and tim-
ing estimator for staggered modulations.

The block diagram of the resulting joint phase and timing es-
timator is finally presented in Fig. 1, whose structure is found to
be similar to the estimator presented by [3]. In fact, the phase and
timing estimates exhibit an ambiguity due to the modulation for-
mat of staggered modulations. As a result, the timing estimates are
ambiguous by multiples of T/2, and the phase estimates by multi-
ples of π (see [3] for details). However, the main difference can be
found in the fact that the phase and timing estimates are now easily
obtained in (29)-(30) from a simple spectral line generation by us-
ing a square-law non-linearity. No other prefiltering apart from the
matched filter is needed. Hence, the proposed joint phase and tim-
ing estimator can asymptotically be thought as an extension of the
well-known O&M Square Timing recovery method for the case of
staggered modulations.

4. SIMULATION RESULTS

Computer simulations have been carried out for evaluating the per-
formance of the joint phase and timing estimator presented in Sec-
tion 3.2. Different types of pulse shape filters have been employed
for encompassing a wide range of staggered modulations. In this
sense, 16-OQAM with both rectangular (RECT) and overlapped
square-root raised cosine (SQRRC) pulses have been simulated.
In addition, a sinusoidal (SIN) pulse shape filter is also considered
for including the case of binary-MSK modulation. It is important
to remark that the proposed joint phase and timing estimator was
derived in section 3 under a band-limited assumption, in the sense
that just the first spectral line at the symbol rate would be retrieved
from the squared matched filter output. In particular, neither the
RECT nor the SIN pulse are band-limited pulses, so the timing
performance provided by the proposed estimator is not expected
to be optimum in these cases.

When selecting the different pulse shape filters to simulate,
a similar main-lobe time duration has been maintained so as to
deal with similar mean-square bandwidths (see Fig. 2). Hence,
approximately twice the symbol rate is achieved by the overlapped
SQRRC with respect to the RECT or SIN pulses. The simulation
results have been obtained by setting Nss = 4 for the overlapped
SQRRC and Nss = 8 for the RECT and SIN pulses. Finally, we
assume a common observation interval of L = 100 symbols.

Figure 3 shows the phase and timing variance as a function
of the working Es/N0. It has been employed 16-OQAM with
a SQRRC pulse and roll-off factors RF={0.35, 0.50, 0.75, 1.00}.
The Modified Cramer-Rao Bound (MCRB) is also included for the
case of roll-off factor 1.0, which is a lower bound on the SQRRC
timing variance [11].

Figure 4 depicts the phase and timing variance as a function of
the working Es/N0. Now, both OQPSK with a RECT pulse and
MSK modulation are considered. Note that for the timing variance
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Fig. 2. Representation of the symbol transmission {+1, +1} with
the SQRRC, RECT and SIN pulses (left) and the pulses frequency
response (right).
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Fig. 3. Phase variance (left) and timing variance (right) as a func-
tion of Es/N0 for 16-OQAM with SQRCC pulse.

in MSK, the estimator performance is closer to the MCRB than in
the case of OQPSK. This is due to the higher effective bandwidth
of the RECT pulse with respect to the SIN pulse, which makes the
former more sensible to the band-limited approximation.

5. CONCLUSIONS

An UML joint phase and timing estimator has been proposed in
this paper for the case of staggered modulations. The exploitation
of the cyclostationary property of the received signal allows us
to derive a quadratic NDA estimator for both phase and timing,
irrespective of the symbol constellation. The core of this estimator
is based on the spectral line generation from a square-law non-
linearity, which can be thought as an extension of the well-known
Square Timing recovery method by O&M for the case of staggered
modulations.
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Fig. 4. Phase variance (left) and timing variance (right) as a func-
tion of Es/N0 for OQPSK with RECT pulse, and MSK.
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