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ABSTRACT

Recently many Space-Time Coding schemes for multiple antenna
systems (MIMO) have been proposed in order to achieve high data
rate when transmitting over wireless channels. However, most of
such schemes rely on Maximum Likelihood (ML) detection which
can become quite complex when many antennas are involved and
higher modulation schemes are utilized. On the other hand, the
high diversity gains of MIMO channels are easily lost when low-
complexity receivers like ZF or MMSE are applied. It is thus of ut-
most importance to look for low-complexity receivers which achieve
almost ML performance. In this paper, a new scheme for approxi-
mate ML detection for typical flat Rayleigh fading channels is pro-
posed achieving ML performance in the area of Bit Error Ratio be-
tween 10−4 and 0.1 as it is of interest in wireless communications.
The proposed scheme allows to transmit 64QAM schemes on 4×4
antenna schemes with a detection complexity of only 1% of a brute
force ML receiver.

1. INTRODUCTION

Once implementation of algorithms under real-time constraints be-
comes an issue, algorithms may exhibit specific difficulties. The
Maximum Likelihood (ML) detection is a scheme well-known to
be very robust and well suited for practical implementation offer-
ing best detection performance whereas linear receivers such as ZF
or MMSE suffer from numerical challenges. The ML detector cal-
culates the squared distance d2

i between the received vector y and
every possible signal constellation xi:

d2
i = ‖y−Hxi‖2 .

H denotes the MIMO channel matrix tpically of a flat Rayleigh fad-
ing channel and ‖.‖ denotes the l2-norm operator. The number of
calculations is |A |nT , whereby |A | and nT denote the size of the
symbol alphabet and the number of transmit antennas, respectively.
For this reason, its complexity grows exponentially with the number
of signal points and transmit antennas.

Therefore, with the growing complexity of multiple input-multiple
output systems (MIMO) the ML detection scheme becomes too com-
plex to implement. Depending on the utilized modulation scheme,
many simplifications have been proposed [1]-[3] converting expen-
sive - to - realize multiplications into cheap add/sub-structures. How-
ever, since ML detection requires a full search its exponential com-
plexity still remains. Lowering the complexity of the basic opera-
tion involved does not solve this problem but only eases it. Other
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strategies [4]-[6] turn the exponential complexity into a polynomial
one.

This paper proposes a new approximate ML detection scheme
with much lower complexity. All operations can be implemented in
simple add/sub structures as proposed in [1]-[3], but in order to save
much more complexity a pre-selection scheme has been invented
that selects such parts of the constellation map that are most likely
to be among the ML-candidates. By such pre-selection scheme it is
not required to search through all possible combinations of transmit-
symbols and thus saves a tremendous amount of complexity. Note
that the complexity of the proposed scheme is still exponentially
increasing with nT .

In the following Sec. 2 the principle of the pre-selection scheme
is explained for 16QAM modulation. Simulation results of the ap-
proximate ML detector are compared to the brute force ML detector
performance. In Sec. 3 the principle is extended to 64QAM. Con-
clusions close the paper.

2. APPROXIMATE ML-DETECTION FOR 16QAM

This contribution focuses on MIMO systems with four transmit an-
tennas (nT =4) and four receive antennas (nR=4). The brute force

ML detector has to calculate |A |4 distances. If 4QAM is used
as modulation scheme, then |A |4 = 44 = 256 distances have to
be calculated. The resulting complexity is not too large for im-
plementation, but if modulation formats with higher symbol alpha-
bet like 16QAM or 64QAM are used, then the number of distance
calculations grows extremely, namely to |A |4 = 164 = 65.536 or
to |A |4 = 644 = 16.777.216, respectively. Especially, today the
64QAM system is not practically realizable, because of the limited
capability of nowadays processors.

2.1. Principle of Reducing the Search Set

The search for the symbol constellation (transmit vector) with the
smallest distance from the received vector y is performed in two
steps.

The first step is to find out the quadrant constellation which fits
best. This is done by representing each quadrant by one signal point
in the center of the quadrant. For this reason, the symbol alphabet
is reduced to four signal points (green ’×’ in Fig. 1), instead of 16
points (blue ’+’). With this reduction, there are only 4nT = 44 = 256
possible symbol vectors (quadrant constellations) xq

i
to be checked.

These special symbol vectors xq
i

are called quadrant constellation
vectors. For these 256 quadrant constellation vectors, the squared
distance d2

i from the received vector y has to be calculated:

d2
i = ‖y−Hxq

i ‖2 , i = 1..256. (1)
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Figure 1: 16QAM signal constellation (blue ’+’) and representing
points of the quadrants (green ’×’).

Note that the calculated distance (Eqn. (1)) is not the true distance
in terms of ML detection. This calculated distance is the distance
to a representative signal constellation and therefore the resulting
minimum is not necessarily the minimum in the ML sense. For
this reason, a systematic error (compared to ML detection) is made.
This calculation (Eqn. (1)) can be performed without multiplication
since the quadrant constellation points follow a 4QAM (see [1] for
more details). The final distance d2

i according to (1) can also be
computed by an l2−norm approximation without losing much per-
formance as will be explained further ahead. Ordering those values
by magnitude, a distance profile is received. As an intermediate
step, only those nOCC values with smallest distance are selected for
further processing.

The second step is to perform the ML search process based on
these selected values, i.e., for each of these nOCC quadrant constel-
lations the corresponding nearest neighbor 16QAM signal constel-
lations (16QAM signal vectors) are determined. This is done by
utilizing the 16QAM signal points, which are the nearest neighbors
of the predetermined quadrant constellation points. For example, in
Fig. 1 the nearest neighbor 16QAM signal points of the upper left
quadrant point are simply the signal points (blue ’+’) surrounding
the upper left green ’×’. For this reason, for each quadrant point
there are four 16QAM signal points. Because of four transmit an-
tennas and four possible 16QAM signal points per transmit antenna,
once again the distances of 256 possible signal constellations have
to be calculated. For all (nOCC×256) 16 QAM signal constellations,
the distances are calculated, finally selecting the one with the small-
est value.

Note that the center value is connected to the final four constella-
tion points by a simple relation. Each quadrant constellation point
is surrounded by another 4QAM constellation with half the length
of the previous 4QAM, as explained above (see again in [1]-[3] for
more details). Thus, the previous results on the quadrant constel-
lation points can be reused as a starting point. Thus, even at this
second step, no multiplication is required.

2.2. Complexity

This section focuses on the complexity of our proposed receiver. As
mentioned in the previous subsection, the total search is subdivided

into two parts. For the first part, 4nT distances have to be calcu-
lated. For one distance calculation, 32 complex add/sub operations
are necessary, whereby shift operations (which have extremely low
complexity) and the effort for calculating the squared norm are ne-
glected. As mentioned above, the l2−norm can be calculated by
an approximation without requiring multipliers. For the complex-
ity calculation the number of operations of this approximation is
also neglected, because these operations are the same for both, the
ML and the Approximate ML. The number of computations in the
second step depends on the number of considered quadrant constel-
lations with minimum distance: nOCC. The distance calculations in
the second step needs the same number of complex add/sub opera-
tions as in the first step. Therefore, the whole complexity in terms
of complex add/sub operations nCAS,AML can be written as:

nCAS,AML = 32nDC,AML = 32 (1+nOCC)4nT .

Where nDC,AML denotes the number of distance calculations and the
index ’AML’ denotes Approximate ML.

As mentioned in the introduction, the number of distance calcu-
lations for a ML Detector can be calculated as:

nDC,ML = |A |nT = 16nT .

Note that in this case one distance calculation needs 16 complex
multiplications and 16 complex add/sub operations and these mul-
tiplications are much more expensive regarding gate count and/or
computation time. Obviously, the reduction of complexity of our
detector compared with a ML detector depends on nOCC and on the
corresponding gate numbers necessary for each operation. For the
special case of 16QAM and nT = 4: nDC,ML = 164 = 65.536. The ap-
proximate ML detector on the other hand needs only nDC,AML=256,
2.816, 5.376, 7.963, and 10.496 for nOCC =1, 10, 20, 30, and 40, re-
spectively. Assuming that the distance calculation of the ML costs
as much as for the approximate ML (a very pessimistic comparison
for our proposed scheme), the complexity of the proposed scheme is
only 0.39%, 4.30%, 8.20%, 12.11% and 16.02% of the brute force
ML Detector, respectively.

2.3. Simulation Results

2.3.1. Exact calculation of the l2−norm

To evaluate the performance of our proposed detector, simulations
were performed, with the exactly calculated l2−norm. The BER
for several values of Signal to Noise Ratio (SNR) and five values of
nOCC=1,10,20,30 and 40 were simulated. The channels were inde-
pendent identically distributed complex Gaussian values with zero
mean and unit variance. These parameterized BER-curves are de-
picted in Fig. 3. The simulated performance of the approximate
ML detector is compared to the simulated performance of the brute
force ML detector, which is the dashed dotted dark green curve in
Fig. 3 (labeled by ’ML’). The blue, red, black, green and magenta
BER-curves (labeled by ’nOCC=1, 10, 20, 30 and 40’) show the per-
formance of our detector for nOCC=1, 10, 20, 30 and 40. As can
be seen, the performance in the low SNR domain is equal to the
ML detector and the approximate ML behaves identical regardless
which nOCC-value is used. Bit errors are caused by noise in a similar
way as for the brute force ML detector. In the high SNR domain,
the ML detector has obviously the best performance. The perfor-
mance of the approximate ML strongly depends on the parameter
nOCC. For all applied nOCC-values the BER-curves end in an error
floor. Here, bit errors are no longer caused by noise, but by the sys-
tematic error which is intended to reduce the search set and thus the
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search time. The larger the parameter nOCC is, the higher is the prob-
ability of finding the true ML candidate. Therefore, the influence
of the systematic error and thus the level of the error floor can be
controlled by the parameter nOCC. Note that for nOCC=40 the BER
performance equals the ML performance down to a BER of 10−4.
Thus, for a typical BER-range in wireless systems ML performance
can be achieved with only 16% of the ML complexity.

2.3.2. Approximation of the l2−norm

In order to obtain a complete multiplier free realization of the pro-
posed detector, the l2−norm is approximated by:

|d| ≈ 5
8
(|ℜ{d}|+|ℑ{d}|)+

3
8

max(|ℜ{d}| , |ℑ{d}|)

=
{ |ℜ{d}|+ 5

8 |ℑ{d}| ; |ℜ{d}| > |ℑ{d}|
|ℑ{d}|+ 5

8 |ℜ{d}| ; else,
(2)

a common approximation in hardware implementations [7], where
ℜ{d} and ℑ{d} denote the real part of the distance d and the imagi-
nary part of the distance d, respectively. To give the reader a flavour
how tight this approximation is, the approximation (Eqn. (2)) and
the true value for the l2−norm are shown in Fig. 2. With this ap-
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Figure 2: Exact l2−norm (red dashed line) and the l2−norm ap-
proximation (blue solid line).

proximation, the entire signal processing of the detector does not re-
quire multiplications and therefore the hardware realization of such
a receiver is very efficient and fast. The performance loss of the
receiver using the approximation compared to the exact l2−norm is
shown in Fig. 3. As it can be further seen in Fig. 3, the performance
degradation of the complete multiplier free detector is quite small.

3. APPROXIMATE ML-DETECTION FOR 64QAM

For 64QAM the detection consists of three steps. The first step
searches for the nOCC1 best fitting quadrants, whereby each quad-
rant is represented by one signal point (red circles in Fig. 4). These
nOCC1 best fitting quadrant constellations are used to calculate the
start values for the second search step. In the second search step, the
best fitting intermediate signal points are determined. This is done
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Figure 3: Exact l2−norm performance (solid lines) and the l2−norm
approximation performance (dashed lines) of 16QAM Approximate
ML receiver.
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Figure 4: The 64QAM signal constellation points (blue ’+’), the
quadrant signal constellation points (red circles) and the intermedi-
ate step signal points (green ’×’).

by utilizing the intermediate signal points, which are the nearest
neighbors of the predetermined quadrant constellation points. For
example, in Fig. 4 the nearest neighbor intermediate signal points
of the upper left quadrant point are simply the signal points (green
’×’) surrounding the upper left red circle. For this reason, for each
quadrant point there are four intermediate signal points. Because of
four transmit antennas and four possible intermediate signal points
per transmit antenna, once again the distances of 256 possible sig-
nal constellations have to be calculated. As mentioned above, each
quadrant constellation is used to calculate one start value for the
second search. From each quadrant constellation, there are 256 in-
termediate signal constellations. From the first step, there are nOCC1

quadrant constellations and therefore nOCC1×256 distances have to
be calculated. The nOCC2 best fitting intermediate signal constella-
tions corresponding to the nOCC2 smallest distances are stored. Now,
there are nOCC2 intermediate signal constellations per quadrant con-
stellation and thus in total nOCC1×nOCC2 intermediate signal constel-
lations. These nOCC1×nOCC2 constellations are new start values for
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the third and last search. From each intermediate constellation the
corresponding 256 nearest neighbor 64QAM signal constellations
(64QAM signal vectors) can easily be calculated by repetitive add/sub
operations. For all of these (nOCC1×nOCC2×256) 64QAM signal con-
stellations, the distances are calculated, finally selecting the one
with the smallest value. Note that also in the case of 64QAM only
add/sub operations are required. A significant difference between
the 16QAM scheme and 64QAM scheme is that the whole search is
subdivided into three parts instead of two parts for 16QAM. There-
fore, the potential of reducing the search set and thus the search time
is doubled. For this reason, the relative reduction in computational
complexity for the 64QAM detector is higher than for the 16QAM
receiver.

3.1. Complexity

The complexity analysis of the 64QAM scheme follows the same
path as for the 16QAM scheme. 256 distances have to be calculated
to find out the nOCC1 best fitting quadrants (first search), nOCC1×256
distances have to be calculated to find the nOCC1×nOCC2 best fitting in-
termediate signal constellation (second search) and the third and last
search needs to calculate nOCC1×nOCC2×256 distances. One distance
calculation requires approximately 32 complex add/sub operations
like in the 16QAM case. In total, the number of complex add/sub
operations nCAS,AML is:

nCAS,AML = 32nDC,AML = 32 (1+nOCC1 +nOCC1 nOCC2)4nT .

The BER vs. SNR curves were simulated for nOCC1=nOCC2=nOCC= 1,
10, 20, and 30. Note, nOCC1=nOCC2=nOCC is only an arbitrary choice.
The resulting number of distance calculations is: nDC,AML = 256,
28.416, 107.776 and 238.336. Thus, the relative complexity com-
pared to the brute force ML is: 0.001%, 0.169%, 0.642% and 1.421%.

3.2. Simulation Results

BER vs. SNR curves were simulated for several values of nOCC1 =
nOCC2 = nOCC. Fig. 5 shows the results of the simulations for exact l2-
norm (solid lines) and l2-norm approximation (dashed lines). The
brute force ML detector performance is indicated by the dashed dot-
ted dark green line (labeled by ’ML’). The principle behavior of the
BER-curves is the same as for the 16QAM case. As for the 16QAM
case, the BER-performance of the approximate ML detector follows
the performance of the brute force ML detector (low SNR domain -
errors caused by noise) until it ends in an error floor (high SNR do-
main - errors caused by the systematic error). The level of the error
floor can be controlled by the parameter nOCC. An important dif-
ference to the 16QAM case is, that a certain BER is achieved with
a lower relative complexity. For example, for the 16QAM case a
BER of approximately 10−3 is achieved with a relative complexity
of 10%, for 64QAM this BER is achieved with 2% relative com-
plexity.

4. CONCLUSION

Our proposed receiver, the approximate ML-Detector, has the ad-
vantage that its complexity compared with the ML detector is still
of exponential order but in absolute terms substantially lower. Its
performance follows the performance of the brute force ML until
the BER ends in an error floor, which is the most important dis-
advantage of this approximate ML detector. The error floor is due
to the systematic error, because of the search set reduction, of our
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Figure 5: Exact l2−norm performance (solid lines) and the l2−norm
approximation performance (dashed lines) of 64QAM Approximate
ML receiver.

scheme. Obviously, there is a tradeoff between complexity and the
level of the error floor (nOCC). For 16QAM the complexity reduction
is not that large. For a BER≈10−3 the complexity is approximately
reduced to 10% of the brute force ML. In the case of 64QAM the
relative reduction in computational complexity is very high. With a
complexity of approximately 2% compared with the brute force ML
Detector, a BER of approximately 10−3 is achieved. If the subse-
quent processing or the application can live with relative high BERs
due to the error floor, then this receiver is one possibility to save a
lot of computation time compared to the brute force ML detector.

5. ACKNOWLEDGMENT

The authors would like to thank Prof. Ernst Bonek for support and
encouragement.

REFERENCES

[1] M.Rupp, J.Balakrishnan, “Efficient chip design for pulse shaping”,
SPAWC 99 in Anapolis, pp. 304-307, May 1999.

[2] H.L.Lou, M.Rupp, R.L.Urbanke, H.Viswanathan, R.Krishnamoorthy,
“Efficient implementation of parallel decision feedback decoders for
broadband applications”, IEEE Electronics, Circuits and Systems Con-
ference, Cyprus, pp.1475-1478, Sept. 1999.

[3] M.Rupp, H.L.Lou, “On Efficient Multiplier-Free Implementation of
Channel Estimation and Equalization”, Globecom 2000, San Francisco,
pp. 6-10, Nov. 2000.

[4] U. Fincke, M.Phost, “Improved methods for calculating vectors of short
length in a lattice, including a complexity analysis”, Math. of Comp.,
vol. 44, pp. 463-471, April 1985

[5] M.O.Damen,H.El-Gamal,G.Caire, ” On maximum-likelihood detection
and the search for the closest lattice point,” IEEE Trans. IT, pp. 2389-
2402, Oct. 2003.

[6] H. Artés, D. Seethaler, F. Hlawatsch, “Efficient Detection Algorithms
for MIMO Channels: A Geometrical Approach for Approximate ML
Detection”, IEEE Trans. Signal Processing, Special Issue on Signal Pro-
cessing for MIMO Wirel. Com. Syst., pp. 2808-2820, Nov. 2003

[7] A.Adjoudani, E.Beck, A.Burg, G.M.Djuknic, T.Gvoth, D.Haessig,
S.Manji, M.Milbrodt, M.Rupp, D.Samardzija, A.Siegel, T.Sizer II,
C.Tran, S.Walker, S.A.Wilkus, P.Wolniansky, ”Prototype Experience
for MIMO BLAST over Third Generation Wireless System,” Special
Issue JSAC on MIMO Systems, vol. 21, pp. 440-451, April 2003.

[8] John G. Proakis, “Digital Communications”, 4th ed. McGraw-Hill, Inc.
2002.

IV - 812

➡ ➠


