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ABSTRACT
The multi-stage transmit Wiener filter (MSTxWF) is pre-
sented, an approach to reducing the complexity of the trans-
mit Wiener filter (TxWF). The MSTxWF is found by ap-
plying the multi-stage decomposition known from the re-
ceive multi-stage Wiener filter (MSWF) to the TxWF. Com-
plexity reduction is achieved by truncating the decomposi-
tion. We show that the resulting reduced rank MSTxWF
can be interpreted as an approximation of the TxWF in a
Krylov subspace, allowing for an efficient computation of
the MSTxWF with the Lanczos algorithm. The reduced
rank MSTxWF shows near-optimum performance for rela-
tively low rank, making it an interesting alternative to eigen-
space-based methods for complexity reduction.

1. INTRODUCTION

Cellular mobile communication systems exhibit a highly
asymmetric structure: A high-complexity base station (BS)
serves a number of low-complexity mobile stations (MSs).
In the downlink of such asymmetric systems, linear transmit
processing (also linear pre-equalization or linear precoding)
provides a means for achieving high performance wireless
transmission while maintaining low complexity at the re-
ceivers. Transmit processing requires at least partial chan-
nel state information (CSI) at the transmitter. We assume
the transmitter to have full CSI, a valid assumption in time
division duplex systems if the coherence time of the channel
is large enough. The transmit Wiener filter (TxWF) [1, 2] is
the optimum linear transmit filter in terms of mean squared
error (MSE). However, the computation of the TxWF is
complex and may be an obstacle for the implementation
even at the BS. Therefore, approaches that reduce complex-
ity by computing the TxWF in a lower dimensional sub-
space are of great interest.

In receive processing, the vector multi-stage Wiener fil-
ter (MSWF) introduced by Goldstein et al. in [3] provides
excellent reduced rank performance (e.g. [4, 5]). In this pa-
per, the multi-stage concept is applied to transmit process-
ing. First, we develop the full rank vector MSTxWF in order
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Fig. 1. MIMO FIR System Model

to find an algorithm for computing a subspace basis. Anal-
ogous to the results of the MSWF presented in [6], we show
that under certain conditions this basis spans a Krylov sub-
space whose basis vectors can be computed with the Lanc-
zos algorithm. In a second step, the reduced-rank MSTxWF
is developed, i.e. complexity is reduced by approximating
the TxWF in a lower-dimensional Krylov subspace.

We present simulation results for the reduced rank
MSTxWF in a frequency-selective multi-user scenario and
compare the performance of the MSTxWF with the perfor-
mance of eigenspace-based TxWF approximations.

2. SYSTEM MODEL

A MIMO system with Na antennas at the transmitter and K
single antenna receivers is considered, as depicted in Fig. 1.
The only processing performed at the receivers is a scal-
ing by a factor β−1 (gain control). The transmitted signal,
given by the convolution of s̃[n] with the FIR transmit filter
P̃ [n] =

∑L
l=0 P̃lδ[n − l], propagates over the frequency-

selective channel H̃[n] =
∑Q

q=0 H̃qδ[n − q] and is per-
turbed by complex AWGN η[n]. After defining

pk =
[
eT

k P̃ T
0 , . . . ,eT

k P̃ T
L

]T

∈ C
Na(L+1),

sk[n] = [s̃k[n], . . . , s̃k[n − Q − L]]T ,

where ei denotes the i-th column of the identity matrix 1,
the k-th element of the estimate ŝ[n] can be written as

ŝk[n] =
K∑

i=1

pT
i Hksi[n] + ηk[n],
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with an appropriately constructed block-toeplitz matrix Hk.
We assume that the data symbols are uncorrelated, i.e.
E [s̃k[n]s̃∗i [n + m]] = σ2

sδ[k − i]δ[m]. Under this assump-
tion, the average transmit power is given by

E
[∥∥∥P̃ [n] ∗ s̃[n]

∥∥∥2

2

]
= σ2

s

K∑
i=1

pT
i p∗

i .

3. TXMF AND TXWF

We shortly review the transmit matched filter (TxMF) and
the TxWF, as both transmit filters are needed in the deriva-
tion of the MSTxWF. The TxMF can be found by maximiz-
ing the real part of the correlation

∑K
k=1 E [ŝk[n]s̃∗k[n − ν]]

under the constraint that the average transmit power does
not exceed Etr, where ν denotes the latency time [7]. After
defining r0,k = Hkeν+1, the filter vector corresponding to
the k-th data stream is given by

pT
MF,k =

√
Etr

σ2
s

∑K
i=1 rH

0,ir0,i

rH
0,k.

The TxWF minimizes the MSE

σ2
ε =

K∑
k=1

E
[
|s̃k[n − ν] − ŝk[n]|2

]

under an average transmit power constraint [1]:

{pT
WF,1, . . . ,pT

WF,K , βWF} = argmin
{pT

1 ,... ,pT
K ,β}

σ2
ε

s.t. σ2
s

K∑
i=1

pT
i p∗

i ≤ Etr.

(1)

With R0 =
∑K

i=1 HiH
H
i +

∑K
i=1 σ2

ηi
/Etr1, the TxWF so-

lution reads as

pT
WF,k = βWFp

T
0,k, where

pT
0,k = rH

0,kR−1
0 , (2)

βWF =
√

Etr/
√

σ2
s

∑K
i=1 pT

0,ip
∗
0,i.

Here, R0 is a N ×N matrix, where N = Na(L+1), result-
ing in a complexity for the computation of pT

0,k of O(N3).
For large N , the complexity involved in the computation
of the TxWF may be prohibitive. Note that in contrast to
receive processing, R0 is not a covariance matrix of any
signal — it is only defined to keep notation simple.

4. FULL RANK MULTI-STAGE TXWF

In order to reduce computational complexity, we seek an ap-
proximation of each pWF,k in a subspace Sk ⊂ CN . Anal-
ogous to the vector MSWF [3], an algorithm for computing

a subspace basis can be found by a stage-wise decompo-
sition of p0,k. For simplicity, we first consider the case
K = 1. This allows us to drop the index k and write p0

instead of p0,k. In the first stage, by choosing a vector
q1 ∈ C

N and a blocking matrix B1 ∈ C
N−1×N satisfying

span(BT
1 ) = null(qH

1 ), CN is partitioned into two orthog-
onal subspaces span(q1) and span(BT

1 ). Accordingly, the
decomposition of p0 can be written as

p0 = α1

(
q1 − BT

1 p1

)
, (3)

with α1 ∈ C and p1 ∈ CN−1. Now, we choose

q1 = r∗
0/ ‖r0‖2 . (4)

By choosing q1 such that span(q1) = span(pMF), we en-
sure that the reduced rank MSTxWF performs at least as
good as the TxMF. Plugging Eqn. (2) and Eqn. (4) into
Eqn. (3) and solving for p1, we find that for this choice of
q1, p1 is independent of α1 and is given by

pT
1 = rH

1 R−1
1 , (5)

with rH
1 = qT

1 R0B
H
1 and R1 = B1R0B

H
1 . Comparing

Eqn. (2) with Eqn. (5) reveals the recursive characteristic of
the decomposition: At the i-th stage, pi is decomposed into
pi = αi+1

(
qi+1 − BT

i+1pi+1

)
with

qi+1 = r∗
i / ‖ri‖2 , span(BT

i+1) = null(qH
i+1),

pT
i+1 = rH

i+1R
−1
i+1,

rH
i+1 = qT

i+1RiB
H
i+1, Ri+1 = Bi+1RiB

H
i+1,

αi+1 = rH
i q∗

i+1

(
qT

i+1Riq
∗
i+1 − rH

i+1R
−1
i+1ri+1

)−1
.

Applying the decomposition N -times, we find

p0 = α1q1 +
N∑

i=2

(−1)i+1

(
i∏

k=1

αk

) (
i−1∏
k=1

BT
k

)
qi. (6)

Motivated by Eqn. (6), define the filters

ti =

(
i−1∏
k=1

BT
k

)
qi. (7)

With Eqn. (7) we have found an iterative algorithm for com-
puting a basis T (D) = [t1, . . . , tD] of a D-dimensional
subspace of CN . For i > 1, using the definition of qi, ri

and Ri, we can write

ti =
1

‖ri−1‖2

(
i−1∏
k=1

BT
k

)(
1∏

k=i−1

B∗
k

)
R∗

0ti−1. (8)

Moreover, it can be shown that ti and tj are R∗
0-conjugate

for |i − j| > 1:

tHi R∗
0tj = 0, |i − j| > 1. (9)
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The computation of the basis T (D) can be further simplified
if we require the basis vectors to be orthonormal. Plugging
Eqn. (7) into tH

i tj = δ[i− j], it follows that orthonormality
is achieved if the blocking matrices satisfy B∗

i BT
i = 1.

In this case, BT
i B∗

i defines an orthogonal projector onto
null(qH

i ). But 1−qiq
H
i also defines an orthogonal projector

onto null(qH
i ). Thus, from the uniqueness of projectors it

can be concluded that BT
i B∗

i = 1 − qiq
H
i . Plugging this

result into Eqn. (8) and using Eqn. (9) finally yields

ti =

(
1− ∑i−1

k=i−2 tktHk

)
R∗

0ti−1∥∥∥(
1− ∑i−1

k=i−2 tktHk

)
R∗

0ti−1

∥∥∥
2

, (10)

with t1 = r∗
0/ ‖r0‖2. In contrast to Eqn. (7), it is no longer

necessary to explicitly compute the blocking matrices. In
addition, the above algorithm is the well-known Lanczos
algorithm [8] for computing an orthonormal basis of the
Krylov subspace of a Hermitian matrix R∗

0 and a vector r∗
0 .

Based on this result, we can conclude that the orthonormal
filters t1, . . . , tD constitute a basis of the D-dimensional
Krylov subspace span([r∗

0 ,R∗
0r

∗
0, . . . , (R∗

0)
D−1r∗

0 ]).
For K > 1, the algorithm outlined in Eqn. (10) is carried

out for each of the K data streams, resulting in K sets of ba-
sis vectors T

(D)
1 , . . . ,T

(D)
K . Thus, in a multi-user scenario,

we have K vector MSTxWFs in parallel. In the following,
this configuration is termed as parallel vector MSTxWF.

5. REDUCED RANK MULTI-STAGE TXWF

After having computed the bases T
(D)
k , the D-stage reduced

rank MSTxWF for each k is found by computing the TxWF
in span(T (D)

k ):

{p̌WF,1, . . . , p̌WF,K , β
(D)
WF } = argmin

{p̌1,... ,p̌K ,β}
σ̌2

ε

s.t. σ2
s

K∑
i=1

p̌T
i T

(D),T
i T

(D),∗
i p̌∗

i ≤ Etr,

(11)

where

σ̌2
ε = σ2

ε

∣∣∣
p1=T

(D)
1 p̌1,... ,pK=T

(D)
K p̌K

.

With ř0,k = T
(D),T
k r0,k and Ř0,k = T

(D),T
k R0T

(D),∗
k , the

solution of Problem (11) is given by

p̌T
WF,k = β

(D)
WF řH

0,kŘ−1
0,k,

β
(D)
WF =

√
Etr/

√
σ2

s

∑K
i=1 řH

0,iŘ
−2
0,i ř0,i.

Note that Ř0,k is a D × D matrix. As a result, the parallel
MSTxWF can be computed by inverting K matrices of di-
mension D × D. A more efficient computation is possible
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Fig. 2. Parallel MSTxWF versus ESTxWF

by exploiting the fact that only the first entry in ř0,k is non-
zero and that, according to Eqn. (9), the matrices Ř0,k are
tri-diagonal. Still, it is important to note that the main com-
plexity lies in the computation of the basis vectors ti,k and
the matrices Ř0,k, since D matrix-vector multiplications
R0t

∗
i,k of O(N2) have to be performed for each k. Thus, the

overall complexity of a D-stage parallel MSTxWF imple-
mentation is of O(KDN 2). The complexity of the TxWF
solution is of O(N 3). As a result, a reduction in complex-
ity is achieved if the number of stages D required to obtain
a close-enough approximation of the full-rank solution is
smaller than N/K .

In the parallel MSTxWF implementation, for each k a
reduced-rank solution is computed using a separate set of
basis vectors. Obviously, we can collect the bases T

(D)
k

into T̃ (D) = [T (D)
1 , . . . ,T

(D)
K ] and compute each reduced-

rank solution in span(T̃ (D)). In the following, this solution
will be termed as joint vector MSTxWF. As this work is
focused on the parallel vector MSTxWF, we use the joint
vector MSTxWF mainly as a performance measure for the
parallel implementation.

6. SIMULATION RESULTS

We present uncoded bit error rate (uncoded BER) results
for the parallel MSTxWF and compare its performancewith
the performance of the TxMF, the TxWF, the joint vec-
tor MSTxWF and the eigenspace TxWF (ESTxWF). Moti-
vated by the principal component analysis [9], the ESTxWF
is computed by approximating the TxWF in the subspace
spanned by the eigenvectors of R0 that correspond to the
DK largest eigenvalues. A system with Na = 4 antenna
elements at the receiver and K = 3 receivers is considered.
In order to keep the overall system as simple as possible,
we do not employ CDMA for multi-user separation. QPSK
modulation is used for transmission. The channels to the
K receivers have an exponential power delay profile with
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Fig. 3. Parallel MSTxWF versus Joint MSTxWF
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Q + 1 = 6 paths. We assume temporally and spatially un-
correlated Rayleigh fading. The transmit filters are of order
L = 15, a fixed latency time ν = 5 is used. The results are
the mean of 10000 channel realizations, 100 symbol vectors
were transmitted per realization. The (transmit) SNR is de-
fined as SNR = 10 log10(Etr/(Kσ2

ηk
))dB, where the noise

power σ2
ηk

is the same for all receivers.
In Fig. 2 it can be observed that the parallel MSTxWF

(P-MS) clearly outperforms the ESTxWF. While the 2-stage
MSTxWF performs substantially better than the TxMF, the
8-stage ESTxWF shows worse BER performance than the
TxMF. Compared to the TxMF, the 8-stage ESTxWF pro-
vides worse performance at higher computational complex-
ity. In contrast to the ESTxWF, the 8-stage MSTxWF pro-
vides close to optimum performance for a BER larger or
equal to 10−3. Note that N/K = 64/3. Thus, in the BER
range under consideration, the MSTxWF can provide opti-
mum performance at significantly reduced complexity.

The parallel and the joint vector implementation of the
MSTxWF are compared in Fig. 3. The parallel MSTxWF
saturates at a higher BER. Nevertheless, of particular in-
terest are the combinations of SNR range and number of

stages D in which the deviation from the optimum solution
is relatively small. For these combinations of interest, the
difference between both MSTxWF implementations is neg-
ligible.

In Fig. 4, the BER is plotted versus the number of stages
D for a fixed transmit SNR of 10 dB. Again, the results
show the superiority of the Krylov subspace-based methods
over the eigenspace approach.

We can conclude that in BER ranges of practical inter-
est, the MSTxWF provides an excellent trade-off between
BER performance and computational complexity.
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