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ABSTRACT

The Bell-Labs Layered Space-time (BLAST) architecture is a sim-

ple and efficient multi-antenna coding structure that can achieve

high-spectral efficiency [1]. Many BLAST detectors require more

receiver antennas than transmitter antennas. We propose a novel

turbo-processing BLAST detector based on a group detection strat-

egy that can operate in systems with fewer receiver antennas than

transmitter antennas. A maximum a posteriori (MAP) decision is

made using a group of transmitted symbols and the remaining sig-

nal contribution is treated as interference. The interference is char-

acterized as non-zero mean colored noise source that is whitened

before a decision is made. The proposed detector, the Group MAP

(GMAP) detector, is a generalization of both the MAP detector

and the turbo-processing Minimum Mean Squared Error (MMSE)

detector in [2, 3]. A novel grouping algorithm is proposed for the

GMAP detector. Simulation is used to compare the GMAP detec-

tor with the MAP detector and MMSE detector.

1. INTRODUCTION

The BLAST architecture is a simple and efficient coding struc-

ture that can take advantage of the multiple-input multiple out-

put (MIMO) channel capacity [1]. The original detector proposed

in [1] uses an Interference Cancellation and Nulling Algorithm

(ICNA). An ICNA detector cannot however be applied to systems

that have more transmitter antennas than receiver antennas. Such

systems can exist in the downlink of a cellular systems where it is

often infeasible to have a mobile station with many antennas due to

size limitations. A similar scenario can exist when there are more

than one transmitters and a single receiver, thus the total number

of transmitter antennas can easily exceed the number of receiver

antennas.

There are several detection strategies that can be applied to

systems that have an excess number of transmitter antennas. An

optimal solution is the maximum likelihood (ML) detector, which

unfortunately has exponential complexity. Suboptimal ML detec-

tors have been applied to BLAST systems using tree-search algo-

rithms [4] and group detection strategies [5, 6].

Turbo processing receivers have also been applied to systems

with an excess number of transmitter antennas. The optimal turbo-

BLAST detector is the MAP detector that has high complexity. A

more computational feasible MMSE BLAST detector [2, 3] uses a
prior information to partially cancel interference and an instanta-

neous MMSE filter to suppress residual interference. With succes-

sive iterations, the performance of the MMSE detector improves as
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Fig. 1. D-BLAST transmitter

more interference is cancelled, but falls short of the MAP detector

performance.

In this paper, we a propose a novel BLAST detector, termed

the Group MAP (GMAP) detector, based on a group detection

strategy. This detector bridges the performance gap between MAP

and MMSE detectors in systems with an excess number of trans-

mitter antenna. The GMAP detector divides the transmitted sym-

bol vector into a set of disjoint groups of equal size. A decision

is made for all the bits in a group by treating the remaining sig-

nal contribution as an interfering noise source, which is whitened

by applying an appropriate filter. The prior probabilities for inter-

fering symbols are used to determine the mean of the interfering

noise source. A novel grouping algorithm is proposed to form

groups for the GMAP detector. The size of each group NG is

an adjustable parameter that determines the complexity of GMAP

detector. Through the choice of this parameter, the GMAP detec-

tor is a generalization of both MAP detector and MMSE detector

in [2, 3]. Our group detection strategy is different from that in

[5] as the solution in [5] does not use a noise whitening filter and

different from the solution in [6] because we incorporate prior in-

formation in the whitening filter.

The remainder of this paper is organized as follows. Section 2

provides a system model that includes the D-BLAST transmitter,

channel model and turbo-processing receiver structure. Section 3

describes the GMAP detector design. A complexity analysis and

BER comparison is contained in Section 4, followed by a summary

and concluding remarks in Section 5.

2. SYSTEM MODEL

Consider a D-BLAST transmitter [1] with N antennas having a

structure shown in Figure 1. Binary data is demultiplexed into N
layers that are independently encoded, interleaved and modulated,

then passed through a modulo-N shifter. We only consider QPSK

modulation such that the modulated output for the nth layer is

given by xn(k) = {2bn(2k)−1}+√−1{2bn(2k+1)−1}, where
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Fig. 2. Turbo Processing BLAST Receiver

{bn(l)} is the coded binary {0, 1} bitstream. The transmitted sym-

bol on antenna n is given by s̃n(k) = x̃α(k), α = (n − k)
mod N . Assuming a flat fading channel model, the vector chan-

nel output can be expressed as

r̃(k) = H̃s̃(k) + ṽ(k) (1)

where H̃ is an M×N complex channel matrix, r̃(k) is the channel

output, ṽ(k) is a Gaussian noise source of variance σ2, and M is

the number of receiver antennas. It is convenient to transform the

complex channel equation in (1) into real matrix equation r(k) =
Hs(k)+v(k) where r(k) = [ �{r̃T(k)} �{r̃T(k)} ], s(k) =

[ �{s̃T(k)} �{s̃T(k)} ], v(k) = [ �{ṽT(k)} �{ṽT(k)} ]
and

H =

[ �{H̃} −�{H̃}
�{H̃} �{H̃}

]
(2)

is the M ′×N ′ real channel matrix with M ′ = 2M and N ′ = 2N

The block diagram for the turbo processing BLAST receiver

is shown in Figure 2. The receiver consists of a BLAST sym-

bol detector, a set of N channel decoders, and a interleaver and

deinterleaver between each decoder and the detector. There are

modulo-N shifters at the input and output of the detector that have

been omitted from Figure 2 for clarity. In each iteration, the de-

coders produce a set of log domain prior probabilities λp
2[bn(l)] =

log{P (bn(l) = 1)/P (bn(l) = 0)} that are used by the detector,

which in turn produces a log domain a posteriori probability as

Λ1[bn(k)] = log
P (bn(k) = 1|r(k))

P (bn(k) = 0|r(k))
≡ λ1[bn(l)] + λp

2[bn(l)]

(3)

where λ1[bn(l)] is the extrinsic information that is fed to the chan-

nel decoder for the nth layer and λp
2[bn(l)] is the a priori informa-

tion provided by the nth channel decoder. The channel decoders

can be efficient implemented using SISO APP module [7].

3. DETECTOR DESIGN

The optimal MAP detector evaluates (3) directly, by summing over

the 2N′
possible signal vectors s(k). The MAP detector becomes

computationally prohibitive for a system with a moderate to large

number of transmitter antennas. The GMAP detector forms an

MAP decision for a group of symbols in s(k), by treating the re-

maining symbols as interference. Let NG be the group size and

with no loss of generality, we assume the signal vector s(k) can be

divided in NΨ disjunct sets Ψ = {G1, . . . , GNΨ}, such that the

members of Gi are the indices of the elements of s belonging to the

ith set. For an arbitrary group G = Gi, define a complimentary set

of interfering symbols Ḡ = {β1, . . . , βNḠ
} of NḠ = N ′ − NG

integers such that G
⋂

Ḡ = ∅ and G
⋃

Ḡ = {1, . . . , N ′}. For a

particular G, the channel output can be expressed as

r = HGsG + HḠsḠ + v (4)

here sG = [sα1 , . . . , sαNG
]T is the reduced dimension signal vec-

tor, sḠ = [sβ1 , . . . , sβNḠ
]T is the interference vector, HG =

[hα1 , . . . ,hαNG
], HḠ = [hβ1 , . . . ,hβN|Ḡ|

], and hi is the ith

column of H. The contribution of the interference and Gaussian

noise can be treated as a colored noise source. Let w = HḠsḠ+v
be the colored noise source whose mean is w̄ = E[w] = HḠŝḠ,

where ŝḠ = [ŝḠ1, . . . , ŝḠNḠ
] and ŝḠi is evaluated using the prior

probabilities from the channel decoders as

ŝḠi =
∑

sḠi∈{+1,−1}
sḠiP (sḠi) = tanh

(
λp

2[b]

2

)
(5)

where b is the bit that determines the symbol sḠi = 2b − 1. The

covariance of w is given by

Rw = E[(w − w̄)(w − w̄)T ] = HḠΩHH
Ḡ + Iσ2

(6)

where Ω = diag(ω1, . . . , ω|Ḡ|) and ωi = E[|sḠi − ŝḠi|2] =

1− ŝ2
Ḡi. We have assumed perfect interleaving in (6) such that the

elements of ŝḠ are independent. The noise w can be whitened by

first removing the mean w̄ and then applying an appropriate noise

whitening filter F = Σ−1/2QH , where Σ is a diagonal matrix

and Q is an orthogonal matrix, both obtain from the eigenvalue

decomposition of Rw = QΣQH ,QQH = I. The whitened

channel observation is given by

y = F(r − w̄) (7)

The APP for the bit bi corresponding to the ith symbol in sG can

be evaluated as

Λ1[bi] = log
P (bi = 1|y)

P (bi = 0|y)
(8)

= log

∑
sGi=+1

P (sG) exp
(

−||y−FHGsG||2
2

)
∑

sGi=−1

P (sG) exp
(

−||y−FHGsG||2
2

) (9)

where sGi is the ith element in sG and the summations in (9) are

over the set of possible sG. The GMAP detector evaluates (9) for

each bit in G.

What remains in the development of the GMAP detector is an

algorithm to choose the groups in Ψ. It is advantageous to group

symbols together that have a high correlation at the channel output,

since suppressing interference from a highly correlated symbol can

give rise to significant noise enhancement in the filtering process.

In order to quantify correlation, we use the normalized correlation

matrix R whose entry in row i and column j is given by

rij =
|hT

i hj |√‖hi‖2‖hi‖2
(10)

The element rij is the normalized correlation between the sym-

bols si and sj at the channel output. Given a normalized correla-

tion matrix R, consider forming Ψ using the following objective
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function

Θ = arg max
G1...GNΨ

NΨ∑
k=1

arg max
j∈Gk

rij (11)

which is equivalent to maximizing the maximum pairwise correla-

tion amongst the members of each group, averaged over all groups.

We use the maximum pairwise correlation criteria, instead of for

example the average pairwise correlation, since the former relates

to the minimum distance between columns of H. At a high SNR,

the bit error rate (BER) is usually largely influenced by the mini-

mum distance between constellation points instead of average dis-

tances. An approximate solution to (11) can be found using the

following greedy algorithm

1 R ← R − I;

2 Ψ ← {G1, . . . , GN′}, Gi = {i};

3 while |Ψ| > NΨ

4 if
∑|Ψ|

i=1 I(|Gi| > 1) < NΨ

5 δij = I(|Gi| + |Gj | ≤ NG);

6 else
7 δij = I(2 < |Gi| + |Gj | ≤ NG);

8 end if
9 rkl = arg maxij rijδij ;

10 Gk ← Gk ∪ Gl;

11 Ψ ← Ψ \ {Gl};

12 for n = 1 . . . |Ψ|, n 
= k;

13 rnk = rkn = max{rnk, rnl};

14 end for
15 Remove kth row and column from R
16 end while

where I(x) is an indicator function that evaluates to 1 if x is true

and 0 otherwise. The first two lines are initialization, placing zeros

on the diagonal of R and forming Ψ as a set of N groups with one

element in each group. The remained of the program is loop that

reduces the size of Ψ by merging two groups each iteration. Lines

4-8 determine if a possible merger is feasible based on the num-

ber of groups with more than one element. The two groups having

maximum correlation and a feasible merger are found in line 9 and

these groups are merged in the remainder of the program. The pre-

ceding algorithm is greedy as it attempts to form highly correlate

groups first. Although this may not optimally satisfy the objec-

tive function in (11), it is advantageous to form highly correlated

groups first, since the BER is more strongly influenced by groups

with a high pairwise correlation, instead of the average pairwise

correlation across all groups.

The GMAP detector is equivalent to the MAP in the limiting

case of NG = N ′ and equivalent to the MMSE detector [2, 3]

detector in the limiting case of NG = 1. For NG = N ′, HG =
HPT , where P is a permutation matrix. Since P does not affect

the MAP decision, the GMAP detector in this case is equivalent to

the MAP. The MMSE detector forms a decision according to

λ1[bi] =
2hT

i R−1
i (r − w̄)

1 − hT
i R−1

i hi

(12)

where 2hT
i R−1

i is the MMSE filter, 1 − hT
i R−1

i hi is an estimate

of the noise vairance at the filter output, Ri = [HΩiH
T + σ2I],

Ωi = diag(ω1, . . . , ωi−1, 1, ωi+1, ωN ) and ωj = E[|si − ŝi|2] =
1− ŝ2

i . For NG = 1, the extrinsic component λ1[bi] of the GMAP

decision in (9) can be simplified as

λ1[bi] = 2hiR
−1
w (r − w̄) (13)
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Fig. 3. BER Comparison N = 6, M = 3 for GMAP, MMSE, and

MAP detectors

Substituting Rw = Ri + hih
T
i in (13) and using the matrix in-

version lemma 1 with A = Ri, B = −1 and X = hi gives

the MMSE decision in (12) after some simplification. Thus the

GMAP detector is equivalent to the MMSE detection in [2, 3] for

NG = 1.

4. SIMULATED RESULTS

This section analyzes the BER performance and complexity of the

GMAP detector. The MAP detector and MMSE detector in [2, 3]

are used for comparison in terms of both complexity and perfor-

mance. Simulations were preformed using bursts of 100 symbols

and each layer was encoded using a rate 1/2 convolutional code

with generating polynomial (7, 5). A random interleaver and dein-

terleaver was used. Estimates for uncoded bits were produced af-

ter 10 turbo iterations. An independent Rayleigh fading model

was used to determine the channel matrix H and perfect channel

knowledge was assumed at the receiver.

A complexity analysis for the GMAP detector is shown in Ta-

ble 1 along with the complexity of the MAP and MMSE [2, 3] de-

tectors for reference. All operations are shown for a single coded

bit decision. The number of multiplications (mult) and additions

(add) is approximate since only the highest polynomial term of

M ′, N ′, NG etc. is shown for clarity and lower power terms are

omitted. The number of elementary operations involve in a ma-

trix inverse (inv) and eigenvalue decomposition (eig) is difficult

to evaluate, thus the complexity is expressed in O(n) notation. It

was assume the noise free channel outputs r = Hs were precom-

puted for the MAP detector, but produced online for the GMAP

detectors. If the group size NG is chosen to be moderately small,

the complexity of GMAP detector is polynomial with respect to

N ′, M ′, and is quite comparable to that of the MMSE detector.

We consider two simulated examples. The first example is

a system with N = 6 transmitting and M = 3 receiving an-

tennas. The BER curves for the GMAP, MMSE, and MAP de-

tectors are shown in Figure 3. For the real signal vector of di-

1(A + XBXT )−1 = A−1 − A−1X(B−1 +
XT A−1X)−1XT A−1
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for NG = 1, 2, 4, 5

MAP MMSE GMAP

mult 2N′
(M ′ + N ′) M ′2N ′ M ′2 NḠ

NG
+ 2NGM ′

add 2N′
M ′ M ′2N ′ M ′2 NḠ

NG
+ 2NGM ′

inv O(M ′3)

eig O(M ′3)/NG

Table 1. Approximate complexity of MAP, MMSE [2, 3], and

GMAP detectors for each coded bit decision

mension N ′ = 12, the group size for GMAP detector was set

to NG = 4. The GMAP detector preformed approximately 1dB
better that the MMSE detector at nominal BER of 10−3. In the

second example, we consider a system with N = 10 transmit-

ting antennas and M = 4 receiving antennas. The BER curves

for the GMAP detector are shown in Figure 4 for different groups

sizes NG = 1, 2, 4, 5, where the NG = 1 case corresponds to the

MMSE detector. The MAP detector performance has been omitted

as each decision requires on order of 220 operations. The GMAP

detector performance improves with increasing NG, with a per-

formance improvement of approximately 1.5dB over the MMSE

detector for NG = 5 case.

5. SUMMARY AND CONCLUSIONS

In this paper, we proposed a novel GMAP group detector that oper-

ates within a turbo processing BLAST receiver. This detector can

be applied to systems having fewer receiver antennas than trans-

mitter antenna. The GMAP detector allows a tradeoff between

complexity and performance through the MAP group size and in-

cludes as special cases, both the MAP detector and MMSE de-

tector in [2, 3]. A novel grouping algorithm is developed for the

GMAP detector. For systems with an excess number transmitter

antennas, the proposed detector has a significant performance im-

provement over the MMSE detector in [2, 3] with a relatively small

MAP group.
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