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Abstract— V-BLAST algorithm is an attractive simple

solution for the Rx processing of a MIMO system. This

paper presents an analytical analysis of some aspects of the

algorithm performance over a flat-fading Rayleigh channel.

Closed-form rigorous analytical expression for the joint

outage probability and its PDF at the 1
st
 detection step are

derived for the case of 2xn system. Corresponding

distribution moments are also evaluated, and asymptotic

expressions are given. The analytical results are validated

through extensive Monte-Carlo simulations.

Index Terms—MIMO, V-BLAST, multi-antenna system, 

fading, BER, outage

I. INTRODUCTION

Multi-antenna (MIMO) systems attract significant

attention during the last few years due to an extraordinary 

high spectral efficiency they promise. A key part of the

system is the receiver (Rx) signal processing algorithm.

The first proposed algorithms were the D- and V-BLAST
[1-3]. While the D-BLAST achieves the full MIMO

capacity, it is more complex as compared to the V-

BLAST, which, despite its simplicity, achieves a

significant portion of the full MIMO capacity. Despite

their popularity, their performance is not understood well 

yet (especially when compared to traditional digital

communication systems, whose performance is

understood quite well by now). Mostly, the algorithms

were analyzed using numerical techniques (i.e., Monte-

Carlo simulations). While this approach is able to predict 

the performance (i.e., BER, outage probability, etc.) quite 

accurately for any specific scenario, it lacks a deep
insight usually provided by analytical techniques. Due to

their complexity, the V and D-BLAST algorithms present 

a serious difficulty for an analytical analysis.

In this paper, we follow the traditional approach to the 

performance analysis of wireless communication systems
over fading channels [4, 5]. The two key parameters are

the outage probability (i.e., the probability that the

instantaneous SNR exceeds given threshold level) and the 

average BER (averaged over the channel statistics). The

latter is expressed as:

( ) ( )
0

e eP P d

∞
= ρ γ γ γ∫                   (1)

where eP  is the average BER, ( )eP γ  is the instantaneous 

BER (i.e. for given instantaneous SNR γ ), and ( )ρ γ  is

the probability density function (PDF) of γ . The outage

probability can be expressed as

( )
0

( ) ( )
th

out th thP d F

γ

γγ = ρ γ γ = γ∫           (2)

i.e. it is given by the cumulative distribution function

(CDF) of γ .

In the context of multi-antenna (MIMO) systems, the

approach has to be extended to account for multiple bit

streams, which are lunched by the Tx antennas
simultaneously. This results in multivariate PDF and

CDF. The key parameters are still the average BER and

the outage probability, which are, however, different at

different detection steps (i.e., for different bit streams).

We employ the method developed in [6, 7] and analyze

analytically a 2xn V-BLAST (i.e., 2 Tx and n Rx antenna 

system). In particular, we derive the joint (multivariate)

PDF and CDF of the after-processing signal powers at the 

1st detection step. The latter is, in fact, the outage

probability, and the former is critical for the average BER 

analysis, as (1) indicates. Note that the SNR is

proportional to the signal power and, hence, has the same 
density (distribution) function when normalized properly. 

While the analysis in this paper is limited to the 1st step

only, we note that (i) it can also be extended to the 2
nd

step, and (ii) at the high SNR mode the total BER is

dominated by the 1
st
 step BER and, hence, it is crucial to

understand well the latter.
The analysis given in the paper results in closed-form

rigorous analytical expressions, which are quite simple

for low-order systems, i.e. for 2x2 and 2x3 ones.

Asymptotic behavior of the outage probability is

discussed as well. It is shown that these functions

facilitate the analysis of the optimal ordering procedure

and provide a significant insight in its performance.

Finally, the analytical results are verified by extensive

Monte-Carlo simulations.

II. V-BLAST ALGORITHM

For completeness, we outline here the major steps of the

V-BLAST algorithm (for details, see for example [3]).

The main idea of the BLAST architecture is to split the
information bit stream into several sub-streams and

transmit them in parallel using a set of Tx antennas (the

number of Tx antennas equals the number of sub-

streams) at the same time and frequency. At the Rx side,

each Rx antennas “sees” all the transmitted signals, which 

are mixed due to the nature of the wireless propagation
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channel. Using appropriate signal processing at the Rx

side, these signals can be unmixed so that the matrix

wireless channel is transformed into a set of virtual

parallel independent channels (provided that the

multipath is rich enough).

The standard baseband system model is used,

= +y Hs ξ                                     (3)

where s  and y  are the Tx and Rx vectors

correspondingly, H  is the 2xn channel matrix (i.e. the

matrix of the complex channel gains between each Tx
and each Rx antenna), n is the number of Rx antennas,

and ξ  is the additive white Gaussian noise (AWGN),

which is assumed to be 2
0(0, )σ ICN , i.e. independent and 

identically distributed (i.i.d.) in each branch.

The job of the V-BLAST algorithm is to find s  given 

y  and H  in a computationally-efficient way. The V-

BLAST processing begins with the 1st Tx symbol and

proceeds in sequence to the m-th symbol (m is the
number of Tx antennas; m=2 in our case). When the

optimal ordering procedure is employed, the Tx indexing

is changed prior to the processing. The main steps of the

algorithm are as follows [1,3]:

1. The interference cancellation step: at the i-th

processing step (i.e., when the signal from the i-th
transmitter is detected) the interference from the first i-1

transmitters can be subtracted based on the estimations of 

the Tx symbols and the knowledge of the channel matrix

H,
1

1

ˆ
i

i j j

j

s
−

=
′ = − ∑y y h                   (4)

where jh  is the j-th column of H, and ˆ js  are the

detected symbols (which are assumed to be error-free).
2. The interference nulling step: based on the

knowledge of the channel matrix, the interference from

yet-to-be-detected symbols can be nulled out using the

Gramm-Schmidt orthogonalization process (applied to

the column vectors of H),

1( )i i i+′′ ′= −y I C y                   (5)

where 1i+C  is the projection matrix on the sub-space

spanned by 1{ ... }i m+h h .

3. The optimal ordering procedure: the order of symbol 

processing is organized according to their after-

processing SNRs in the decreasing order (i.e., the symbol 
with highest SNR is detected first).

III. ANALYSIS OF THE V-BLAST ALGORITHM

The following basic assumptions are employed in the

present paper:

(1) The channel is random, quasistatic (i.e. fixed for

every frame of information bits but varying from frame to 

frame), frequency independent (i.e., negligible delay

spread); the components of H are (0, )ICN  (i.e., i.i.d.

Rayleigh fading with unit average power gain). (2) Equal-

power constellation is used. (3) The Tx signals, noise and 

channel gains are independent of each other. (4) Perfect

channel knowledge is assumed to be available at the

receiver. (5) There is no performance degradation due to

synchronization and timing errors.

h1 h1⊥

h2h1⎜⎜

e2

e1

e2

e1

h1

h1⊥’

h2h2⊥

h2⊥

ψ

ϕ
ϕ

Figure 1. Geometrical representation of interference nulling 

out: decomposition of 
1h  into 

1⊥h  and
1

h .
1e  and

2e  are 

basis vectors of the space spanned by the columns of H  (
1h

and 2h ).

It should be noted that the proposed technique is

flexible enough so that some of these assumptions can be 
relaxed, resulting, however, in a more complex analysis.

Geometrical framework for the closed-form analysis

of the algorithm operation has been already discussed in

details in [6,7]. Here, we summarize the major results that 

are used below. For the case of m=2, the interference

nulling step is illustrated in Fig. 1. Since the Rx signal

coming from j-th Tx is j jsh  and its power is

2 2

j j js =h h  (recall that we assume an equal power

constellation), the after-processing signal power, and,

hence, the SNR, at the 1st processing step is proportional 

to

( )2 2 2 2 2
1 2 1 2max , sin max ,s ⊥ ⊥

⎡ ⎤ ⎡ ⎤= = ϕ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
h h h h  (6)

where the max is due to the optimal ordering procedure,

and the orthogonal vector components are due to the

interference nulling out. Note that
2 2 2

1 2 2, nχh h ∼ ,

where ∼  means in distribution, and, as it was shown in

[6,7],
2 2 2

1 1 2( 1), n⊥ ⊥ −χh h ∼ . The distribution

[ ]( ) PrP x s x= < of s can be presented in the following

form [6,7]:

/ 2 2

20
( ) ( )

sin
n

x
P x F f d

π
ϕ

⎛ ⎞
= ϕ ϕ⎜ ⎟⎜ ⎟ϕ⎝ ⎠

∫         (7)

where
1

2
1

0

( ) Pr 1
!

kn
x

n

k

x
F x x e

k

−
−

=

⎡ ⎤= < = −⎢ ⎥⎣ ⎦ ∑h  is n-th order

MRC distribution, and ( )fϕ ϕ  is the p.d.f. of ϕ , which

can be shown to be 2 3
( ) 2( 1)(sin ) cos

nf n −
ϕ ϕ = − ϕ ϕ .

Using these, the average BER was evaluated in [7]. It was 

also shown that the effect of the optimal ordering is a 3

dB increase in the SNR. However, no explanation was

provided for this effect.

In order to get more insight into the algorithm

performance and, in particular, into the optimal ordering

procedure, we study in this paper the joint CDF
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2 2
1 2 1 1 2 2( , ) Pr ,F x x x x⊥ ⊥

⎡ ⎤= < <⎢ ⎥⎣ ⎦
h h            (8)

and the joint PDF,

2
1 2

1 2
1 2

( , )
( , )

F x x
x x

x x

∂ρ =
∂ ∂

                           (9)

While 1h  and 2h  are independent (by the assumption of 

i.i.d. Rayleigh channel), the interference nulling out

introduces correlation between
2

1⊥h  and
2

2⊥h . Using

the same argument as in [6,7], the joint CDF can be

presented as

( ) ( )1 2 1 21
( , ) ( 1) n

n nF x x n F x t F x t t dt
∞ −= − ∫       (10)

The joint PDF is

( ) ( ) 2
1 2 1 21

( , ) ( 1) n
n nx x n x t x t t dt

∞ − +ρ = − ρ ρ∫       (11)

where
1( )

( )
( 1)!

n
xn

n
dF x x

x e
dx n

−
−ρ = =

−
                   (12)

is the n-th order MRC PDF. After some manipulations,

(11) reduces to the following

1 2
1 ( )

1 2 1 2
1 2 2

1 2 01 2

( )
( , )

( 2)! !( )

n x x in

i

x x x xn e
x x

n x x ix x

− − +

=

⎛ ⎞ +ρ = ⎜ ⎟− + +⎝ ⎠
∑

(13)

Note that, as it should be due to the problem symmetry,

the PDF is symmetrical with respect to x1 and x2 . It is

straightforward to see that

1

2
1

1 1 2 2

0

( ) ( , )
( 2)!

n
xx

x x x dx e
n

∞ −
−ρ = ρ =

−∫  (14)

as it should be since 
2 2

1 2( 1)n⊥ −χh ∼ . Asymptotically, for 

1 2, 1x x <<  (i.e., small outage probability region), one

obtains

1

1 2
1 2 2

1 2 1 2

1
( , )

( 2)! ( )

n
x xn

x x
n x x x x

−⎛ ⎞
ρ ≈ ⎜ ⎟− + +⎝ ⎠

     (15)

After some manipulations, (10) can be presented in the

following form:

( )1 2 2 1 2 2 2 1 2 32( , ) 1 ( 1) ( ) ( ) ( )F x x n I x I x I x x I= − − + − + −
      (16)

where
2

2

0 0

( 1)
( ) , ( 2)!( 1)

( 1 )! !

jn i
x i i

i i

i j

I x e a x a n i
n j j

−
−

= =

−= = − − −
− −∑ ∑

1 2

2 2
( ) 1

32 1 2 1 2 1 2( ) ( , )( )
n

x x n i
i

i n

I e x x x x x x
−

− + − −

=
= + ϕ +∑

2 2 1
1 2

1 2

1

( )!
( , )

!( )!( )!

j kkn n

i

j i k j n

j n x x
x x

k j k j i

−− −

= = − +

−
ϕ =

− −∑ ∑

Note that, while ( , ) ( )F x x P x= , as it should be,

( , ) ( ) /x x dP x dxρ ≠ . Asymptotically, for 1 2, 1x x << , the

joint CDF is

1

1 2
1 2

1 2

1
( , )

( 1)!

n
x x

F x x
n x x

−⎛ ⎞
≈ ⎜ ⎟− +⎝ ⎠

   (17)

For 1 2x x<< , one obtains the marginal CDF,

1
1 2 1 1 1

1
( , ) ( )

( 1)!

n
F x x x F x x

n

−>> ≈ ≈
−

     (18)

which is the asymptotic CDF of (n-1)-th order MRC, as it 

should be since
2 2

1 2( 1)n⊥ −χh ∼ . For 1 2x x= , (17)

clearly gives the 3 dB effect first predicted in [6,7].

Using the joint PDF, we can now evaluate the

moments of 1 2[ , ]x x ,

2 2 2 2
1 2 1 1 1 2 1

2
1 2 1 2

1 2 12
1 2

( 1), ( ) ( 1),

( 1) 1
, R

1 1

x x n x x n

x x x xn n
x x

n n

= = − σ = − = − σ = σ

− ⋅−= = =
+ σ σ +

 (19)

The expression for the correlation coefficient is
remarkably simple. Note that the correlation decreases as 

n increases and for large n it is very small. However, it

cannot be neglected as the diversity order analysis in

[6,7] demonstrates. For example, in our case (m=2)

neglecting the correlation would result in

2 2
1 2max ,s ⊥ ⊥

⎡ ⎤= ⎢ ⎥⎣ ⎦
h h  having diversity order = 2(n-1)

while, in fact, the true diversity order is (n-1). Let us

consider this issue in more details. If we assume that
2

1⊥h  and 
2

2⊥h  are independent, then the CDF of s is

{ } 2
1( ) Pr ( )s nF x s x F x−′ = < =    (20)

However, the true CDF of s is given by,

{ }( ) Pr ( , )sF x s x F x x= < =                (21)

The results are very different for the small outage

probabilities, as fig. 2 demonstrates. 
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Figure 2. Comparing the true 1st step outage probability 

with the one when the correlation is neglected, for 2x2 

system.

The reason for low correlation being important is that we 
are interested in the distribution tails (low outage) and the 
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correlation is just an average measure which does not

emphasize the tails. It should be also noted that zero

correlation does not in general means independence (this

is true for the Gaussian random variables but, in our case, 
2

1⊥h  and 
2

2⊥h  are not Gaussian).

It is instructive to consider the 2x2 case in more

details, when the expressions become especially simple.

One obtains,

1 2( )
1 2 1 2

3 2
1 21 2 1 2

( , ) 2

1 1 1

2( )( ) ( )

x x
x x x x e

x xx x x x

− +ρ = ×

⎞⎛
⎟× + +⎜⎜ ⎟++ +⎝ ⎠

 (22)

1 2 1 2( ) 1 2
1 2

1 2

( , ) 1 ( ) 1
x x x x x x

F x x e e e
x x

− − − + ⎛ ⎞
= − + + +⎜ ⎟+⎝ ⎠

(23)

The corresponding asymptotic expressions, for

1 2, 1x x << , are

1 2
1 2 3

1 2

2
( , )

( )

x x
x x

x x
ρ ≈

+
(24)

1 2
1 2

1 2

( , )
x x

F x x
x x

≈
+

 (25)
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Figure 3. Rigorous and approximate expressions for the

outage probability for 2x2 system.

Fig. 3 compares the asymptotic expression (25) with

the rigorous one. As one might see, (25) is very accurate

for 1 2, 1x x < . Extensive Mote-Carlo simulations have

been carried out to verify the analytical expressions. The

results are not distinguishable from the analytical one

and, hence, are not shown on the figure. Clearly, when

2 1x x<  there is a floor effect: increasing further 1x  does 

not decrease the outage probability (as it would be the

case if 1x  and 2x  were independent). Hence, the joint

outage probability is dominated by the smallest signal

power. This is the way in which 1x  and 2x  are coupled

to each other. Fig. 4 clearly indicates this effect in 3-D.

Similar results hold true for the larger n as well.

Figure 4. Outage probability versus x1 and x2 .

IV. GENERIC CASE OF MXN SYSTEM

It is difficult to obtain similar results in the case of m>2

since the joint pdf 1( ,... )mfϕ ϕ ϕ  of { }1,... mϕ ϕ , iϕ  being 

the angle between ih  and the sub-space spanned by all

the other column vectors, is not known. However, based

on the asymptotic CDF (17), we conjecture that in the

generic case of mxn system it takes the following form:

1

1

1

1 1
( ... )

( 1)!

n m
m

m
ii

F x x
n m x

− + −

=

⎛ ⎞
≈ ⎜ ⎟⎜ ⎟− + ⎝ ⎠

∑      (26)

Extensive Monte-Carlo simulations have been carried out 

for 3x3, 3x4 systems. It was found that the approximation 

is indeed correct provided that 1,..., 1mx x < .

V. REFERENCES

[1] G.J. Foschini et al, Analysis and Performance of Some Basic

Space-Time Architectures, IEEE Journal Selected Areas Comm.,

v. 21, N. 3, pp. 281-320, April 2003.

[2] G.J Foschini, ‘Layered space-time architecture for wireless

communication in a fading environment when using multiple
antennas’, Bell Lab. Tech. J., vol. 1, N. 2, pp. 41-59, 1996.

[3] G.J Foschini et al, Simplified Processing for High Spectral

Efficiency Wireless Communication Employing Multi-Element

Arrays, IEEE Journal on Selected Areas in Communications, v.

17, N. 11, pp. 1841-1852, Nov. 1999.

[4] M. Schwartz, W.R. Bennett, S. Stein, Communication Systems
and Techniques, IEEE Press, New York, 1996.

[5] M.K. Simon, M.S. Alouini, Digital Communication over
Fading Channels, Wiley, New York, 2000.

[6] S. Loyka, V-BLAST Outage Probability: Analytical Analysis,

IEEE Vehicular Technology Conference, 24–28 September 2002,

Vancouver, Canada.

[7] S. Loyka, F. Gagnon, Performance Analysis of the V-BLAST

Algorithm: an Analytical Approach, IEEE Trans. Wireless

Comm., accepted, 2003.

1, dBx2, dBx

1 2( , )F x x

IV - 784

➡ ➠


