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ABSTRACT
The conventional nulling-and-cancelling (NC) detection scheme for
MIMO systems uses the layerwise post-detection mean-square er-
rors (MSEs) as reliability measures for layer sorting. These MSEs
are average measures that do not depend on the received vector. In
this paper, we propose the novel dynamic nulling-and-cancelling
(DNC) detector that performs “dynamic” layer sorting based on
the current received vector. Approximate a-posteriori probabilities
(constructed by means of a Gaussian approximation for the post-
detection interference) are used as measures of layer reliability. This
results in an MMSE nulling technique that uses a simple layer-
sorting rule with significantly improved performance. Our simu-
lation results show that the DNC scheme can yield near-ML perfor-
mance for a wide range of system sizes and signal-to-noise ratios.

1. INTRODUCTION

It is well known that the nulling-and-cancelling (NC) detection
scheme for MIMO systems (e.g., [1]) cannot exploit all of the avail-
able diversity, and thus its performance is inferior to the perfor-
mance of maximum-likelihood (ML) detection. The NC scheme
uses the layerwise post-detection mean-square errors (MSEs) [2] as
a reliability criterion for layer sorting. However, these MSEs are
just average measures that do not depend on the received vector.

Here, we propose the novel dynamic nulling-and-cancelling
(DNC) detector that performs “dynamic” layer sorting based on the
current received vector. At each decoding step, the DNC scheme de-
tects the symbol and layer with maximum approximate a-posteriori
probability (APP). The approximate APP is constructed by means
of a Gaussian approximation for the post-detection interference; this
approach is inspired by [3,4]. The DNC layer-sorting rule, although
quite simple, can result in near-ML performance for a wide range of
system sizes and signal-to-noise ratios (SNRs). We will here present
the DNC scheme in a spatial multiplexing context; however, it can
equally well be used for MIMO systems employing linear disper-
sion codes and for multiuser detection in CDMA systems.

Our paper is organized as follows. In the remainder of this sec-
tion, we present the system model and briefly review existing detec-
tion schemes. In Section 2, we propose and discuss the novel DNC
detector. Simulation results are finally presented in Section 3.

1.1. System Model

We consider a MIMO channel with MT transmit antennas and MR ≥
MT receive antennas (briefly termed an (MT,MR) channel). We as-
sume a spatial multiplexing system such as V-BLAST [1] where the
ith data symbol (or layer) di is directly transmitted on the ith trans-
mit antenna. For any given time instant, this leads to the well-known
baseband model

r = Hd+w , (1)

with the transmitted data vector d
�= (d1 · · · dMT

)T, the MR × MT

channel matrix H, the received vector r
�= (r1 · · · rMR

)T, and the
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noise vector w
�= (w1 · · · wMR

)T. The data components di are drawn
from a complex symbol alphabet A and are assumed zero-mean
and independent with unit variance. The noise components wi are
assumed independent and circularly symmetric complex Gaussian
with variance σ 2

w. The channel H is considered constant over a block
of N time instants and perfectly known at the receiver.

1.2. Review of Detection Schemes

As a background and for later reference, we briefly review major
detection schemes for spatial multiplexing systems.

LINEAR SCHEMES. In linear equalization based schemes, the de-
tected data vector is d̂ = Q{y} with y = Gr, where G is the equalizer
matrix and Q{·} denotes componentwise quantization according to

d̂i = arg min
a∈A

|yi−a|2. (2)

The zero-forcing (ZF) equalizer is given by the pseudo-inverse [5]
of H. Thus, the result of ZF equalization (before quantization) is

yZF = H#r = (HHH)−1HHr = d+ w̃ , (3)

which is the data vector d plus the transformed noise w̃ = H#w with
covariance matrix Rw̃ = σ2

w (HHH)−1. The minimum mean-square
error (MMSE) equalizer [6] minimizes the MSE E

{‖y−d‖2
}

and
is given by GMMSE = (HHH+σ2

wI)−1HH, so that

yMMSE = (HHH+σ2
wI)−1HH r . (4)

NULLING-AND-CANCELLING. In contrast to linear detection,
where all layers are detected jointly, NC uses a serial decision-
feedback approach to detect each layer separately (e.g., [1]). At each
decoding step, a single layer is detected and the corresponding con-
tribution to the received vector r is then subtracted from r; the other
layers that have not yet been detected are “nulled out” (equalized)
using a ZF or MMSE equalizer. NC thus attempts to progressively
clean r from the interference corresponding to the layers already de-
tected. To minimize error propagation effects, more reliable layers
should be detected first. Commonly, the layerwise post-detection
MSEs are used as measures of layer reliability [2]. The resulting
performance is however still significantly inferior to that of ML de-
tection (see Section 3).

OPTIMUM DETECTION. ML detection [7, 8] yields minimum vec-
tor error probability for equally likely data vectors. For our system
model (1) and our assumptions, the ML detector is given by

d̂ML = arg min
a∈A MT

‖r−Ha‖2.

The computational complexity of ML detection grows exponentially
with MT. The Fincke-Phost sphere-decoding algorithm for ML de-
tection [8] has an average complexity of roughly O(M3

T) [9].
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2. DYNAMIC NULLING-AND-CANCELLING

The novel dynamic nulling-and-cancelling (DNC) scheme uses ap-
proximate a-posteriori probabilities (APPs) to indicate layer relia-
bility. Since the APPs depend on the current received vector, this re-
sults in dynamic layer sorting in contrast to the static (average) layer
sorting of conventional NC. The approximate APPs are based on a
Gaussian approximation for the post-detection interference. This is
inspired by [3,4]; in particular, it is shown in [3] that for CDMA sys-
tems the post-detection multiple-access interference obtained with a
linear filter becomes Gaussian for large system sizes. (However, we
will see in Section 3 that DNC can yield excellent performance al-
ready for MIMO systems of moderate size.) We will discuss DNC
just for the first layer detection step, without considering the sub-
sequent interference cancellation step (see [1] for a discussion of
interference cancellation). The subsequent layer detection steps are
analogous, however with a reduced number of active layers.

2.1. Basic Approach

For the ith layer (i ∈ {1, . . . ,MT}), the optimum decision on the data
symbol di ∈ A is given by the maximum a-posteriori (MAP) rule
that maximizes the APP1 P{di=a|yZF} [7]:

d̂i
�= arg max

a∈A
P{di=a|yZF} . (5)

The resulting maximum APP P{di = d̂i|yZF} is a measure of the
reliability of this optimum symbol decision. Our approach to layer
sorting now is to first calculate the optimum symbol d̂i for each layer
i and then choose the layer î for which the reliability of this optimum
symbol decision (APP for di = d̂i) is maximum:

î
�= arg max

i∈{1,...,MT}
P{di= d̂i|yZF} . (6)

Finally, layer î is decoded in favor of d̂
î
; this result is subsequently

used for interference cancellation.
Unfortunately, the computational complexity of APP calculation

is exponential in MT. Assuming that all data symbols are transmit-
ted equally likely, i.e., P{di= a} = 1/|A | for all a ∈ A , the APP
can be rewritten as

P{di=a|yZF} =
f (yZF|di=a)

∑a′∈A f (yZF|di=a′)
, (7)

where Bayes’ rule has been used. Because of the Gaussianity
of the noise, the conditional probability density functions (pdf’s)
f (yZF|di= a) are multivariate multimodal Gaussian mixture pdf’s.
We now use a Gaussian approximation for the post-detection in-
terference to obtain a computationally efficient approximation to
(7). More specifically, we will approximate the Gaussian mixture

pdf f (yZF|di=a) by a Gaussian pdf f̃ (yZF|di=a) with mean µi
�=

E{yZF|di=a} and covariance Ci
�= cov{yZF|di=a}. To find expres-

sions of µi and Ci, we reformulate yZF = d+ w̃ in (3) as

yZF = diei +
MT

∑
j=1
j �=i

d je j + w̃ ,

where ei is the ith MT-dimensional unit vector. We then obtain

µi = aei , Ci = Ii +Rw̃ , (8)
in which Ii denotes the identity matrix of size MT with the ith diag-
onal element replaced by zero. The Gaussian pdf f̃ (yZF|di= a) is
now completely determined, and the APP in (7) is approximated by

P{di=a|yZF} ≈ f̃ (yZF|di=a)

∑a′∈A f̃ (yZF|di=a′)
. (9)

1Note that the APP can equivalently be conditioned on the result of ZF
equalization yZF rather than on the received vector r since ZF equalization
without quantization does not imply any loss of information.

Using this Gaussian approximation, the maximization in (5) that
yields the optimum symbol for the ith layer becomes

d̂i ≈ arg max
a∈A

f̃ (yZF|di=a) , i = 1, . . . ,MT . (10)

Here we have used the fact that the denominator in (9) is nonneg-
ative and independent of a. Furthermore, the maximization in (6)
that is used to determine the optimum layer becomes

î ≈ arg max
i∈{1,...,MT}

{
f̃ (yZF|di= d̂i)

∑a∈A f̃ (yZF|di=a)

}
. (11)

(Note that whereas the denominator in (7), ∑a∈A f (yZF|di= a) =
|A | f (yZF), is independent of the layer index i, the denominator in
(11) depends on i due to (8).) In what follows, d̂i and î will be used
to denote the right-hand sides in (10) and (11), respectively. We next
discuss the computation of d̂i and î.

2.2. Stage 1: Calculation of d̂i

With (8), the maximization in (10) can be written as2

d̂i = arg max
a∈A

{
exp

(− (yZF−aei)
HC−1

i (yZF−aei)
)}

= arg max
a∈A

{
2Re

{
yH

ZF C−1
i ei a

}−|a|2eT
i C−1

i ei

}
. (12)

The matrix inversion lemma [5] applied to C−1
i =

(
Ii +Rw̃

)−1 yields

C−1
i = W

(
I+

eie
T
i W

1−Wi,i

)
, (13)

with
W

�= (I+Rw̃)−1 =
(
I+σ2

w(HHH)−1)−1 (14)

(this is termed Wiener estimator in [10]) and with Wi,i denoting the
ith diagonal element of W. The Wiener estimator converts ZF equal-
ization (3) into MMSE equalization (4) [10]:

yMMSE = WyZF . (15)

Using (13) and (15), (12) can be simplified to

d̂i = arg max
a∈A

{
1

1−Wi,i

(
2Re

{
y∗MMSE,i a

}−Wi,i |a|2
)}

.

It can be shown that 0 ≤ Wi,i < 1, and thus 1 ≤ 1/(1−Wi,i) < ∞.
We then have

d̂i = arg max
a∈A

{
2Re

{
y∗MMSE,i a

}−Wi,i |a|2
}

= arg min
a∈A

ψ2
i (a) ,

(16)
with the “unbiased distance”

ψ2
i (a) �=

∣∣∣∣yMMSE,i

Wi,i
−a

∣∣∣∣2

. (17)

The result in (16) is known as unbiased MMSE detection [11]; it
will hereafter be denoted as

d̂i = Qu{yMMSE,i} . (18)

In (17), the bias after MMSE equalization (defined as E{yMMSE,i −
di|di} [11]) is compensated via the division by Wi,i, i.e.,

E
{ yMMSE,i

Wi,i
|di

}
= di. In general, this results in a slightly reduced er-

ror probability of (18) compared to conventional MMSE detection

2We assume σ 2
w �= 0 so that Ci = Ii +Rw̃ is nonsingular.
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(where yMMSE,i is quantized according to (2)). For constant modu-
lus signalling, i.e., when |a| is equal for all a ∈A , unbiased MMSE
detection is equivalent to conventional MMSE detection.

Thus, using the Gaussian approximation, MAP symbol detection
for each layer is equivalent to unbiased MMSE detection, which is
computationally simple.

2.3. Stage 2: Calculation of î

By using the Gaussian approximation, and by applying (13) and
(15), the maximization in (11) can be rewritten as

î = arg min
i∈{1,...,MT}

∑
a∈A
a �=d̂i

eg(a,i) (19)

with

g(a, i) �=
2Re

{
y∗MMSE,i (a−d̂i)

}−Wi,i

(|a|2−|d̂i|2
)

1−Wi,i

= − Wi,i

1−Wi,i

[
ψ2

i (a)−ψ2
i (d̂i)

]
.

Taking the logarithm of the function minimized in (19) and using
the max-log approximation (e.g., [12]), we obtain

î = arg min
i∈{1,...,MT}

⎧⎪⎨
⎪⎩log

⎛
⎜⎝ ∑

a∈A
a�=d̂i

eg(a,i)

⎞
⎟⎠

⎫⎪⎬
⎪⎭

≈ arg min
i∈{1,...,MT}

{
max
a∈A
a�=d̂i

{
g(a, i)

}}

= arg max
i∈{1,...,MT}

{
Wi,i

1−Wi,i
min
a∈A
a �=d̂i

{
ψ2

i (a)−ψ2
i (d̂i)

}}
. (20)

This simplifying approximation will be used in the following; we
thus redefine î to be given by (20).

For an interpretation of (20), we consider the MMSE post-
detection SNR of the ith layer defined as (e.g., [13])

SNRi
�=

1
MSEi

−1 , (21)

where MSEi is the minimum MSE of the ith layer (e.g., [2]):

MSEi
�= E

{|yMMSE,i−di|2
}

= σ2
w

((
HHH+σ2

wI
)−1

)
i,i

(22)

= σ2
w

MT

∑
j=1

1
σ2

j +σ2
w
|(v j)i

|2.

Here, the σ j and v j denote, respectively, the eigenvalues and eigen-

vectors of HHH. MSEi can be related to Wi,i. From (14),

Wi,i =
MT

∑
j=1

σ2
j

σ2
j +σ2

w
|(v j)i

|2

=
MT

∑
j=1

|(v j)i
|2 − σ2

w

MT

∑
j=1

1
σ2

j +σ2
w
|(v j)i

|2

= 1−MSEi .

Inserting this in (21) yields SNRi in terms of Wi,i:

SNRi =
Wi,i

1−Wi,i
.

Thus, (20) can be written as

î = arg max
i∈{1,...,MT}

{
SNRi min

a∈A
a �=d̂i

{
ψ2

i (a)−ψ2
i (d̂i)

}}
. (23)

Note that due to (16), ψ2
i (a)−ψ2

i (d̂i) ≥ 0 for all a ∈ A .
For a real system with BPSK modulation (note that this is fully

equivalent to a complex system with 4-QAM modulation [14]), this
simplifies as follows. We have

î = arg max
i∈{1,...,MT}

{
SNRi

[
ψ2

i (−d̂i)−ψ2
i (d̂i)

]}

= arg max
i∈{1,...,MT}

{
1

MSEi
yMMSE,i d̂i

}
,

where (17) has been used. Now

d̂i =
{−1, for yMMSE,i < 0

1, for yMMSE,i > 0 ,

and thus we obtain

î = arg max
i∈{1,...,MT}

{
1

MSEi
|yMMSE,i|

}
. (24)

This is seen to be a simple extension of the layer sorting of conven-
tional MMSE-based NC.

2.4. Discussion

The reliability of the detected symbol d̂i corresponding to the ith
layer—i.e., the function maximized in (23)—consists of two factors:

• The first factor, SNRi, expresses the average reliability of the ith
layer. This factor depends on the channel H and noise variance
σ2

w but not on the current received vector r.

• The second factor, min a∈A
a �=d̂i

{
ψ2

i (a)−ψ2
i (d̂i)

}
, expresses the in-

stantaneous reliability of the ith layer. This factor depends on
the current received vector r via yMMSE,i (cf. (17)).

With conventional NC, the layers are sorted simply according to
maximum SNRi (equivalently, according to minimum MSEi, see
(21)). With DNC, layer sorting additionally takes into account the
instantaneous-reliability factor min a∈A

a �=d̂i

{
ψ2

i (a)−ψ2
i (d̂i)

}
. To ap-

preciate the beneficial influence of this factor, suppose that SNRi is
large but, for a specific received vector r, layer i is very unreliable
in that yMMSE,i/Wi,i (cf. (17)) happens to be close to a boundary
of the symbol decision regions. In that case, the unbiased distance
for the detected symbol d̂i will be close to the unbiased distance for
some other symbol a �= d̂i, i.e., ψ2

i (d̂i) ≈ ψ2
i (a). It follows that the

instantaneous-reliability factor min a∈A
a �=d̂i

{
ψ2

i (a)−ψ2
i (d̂i)

}
is small,

regardless of the average-reliability factor SNRi, and thus DNC cor-
rectly treats this layer as unreliable. In contrast, conventional NC
would erroneously treat this layer as reliable because of the large
SNRi. This explains the performance advantage of DNC over con-
ventional NC.

2.5. Algorithm Summary

The first decoding step of the proposed DNC algorithm can be sum-
marized a follows.

1. Preparation: Calculate (HHH+σ2
wI)−1 and yMMSE; determine

SNRi using (21) and (22).

2. Stage 1: Perform unbiased MMSE detection for all layers, i.e.,
calculate d̂i =Qu{yMMSE,i} for i=1, . . . ,MT according to (16).

3. Stage 2: Determine the most reliable layer index î according to
(23) (or (24) in the case of an equivalent real system model with
BSPK modulation).
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Figure 1: SER performance of the proposed DNC schemes and of
standard detectors for 4-QAM modulation: (a) SER versus SNR for
an (8,8) system, (b) SER versus MT = MR at an SNR of 15 dB.

4. Decoding and interference cancellation: Finally, decode layer î
in favor of d̂

î
; then use this result for interference cancellation to

obtain a reduced system model.

For the next decoding step, this procedure is applied to the reduced
(interference-cleaned) system model, etc.

The computational complexity of the DNC detector is a priori
higher than that of the NC detector. This is because DNC performs
layer sorting anew for each received vector r whereas NC performs
layer sorting only once for an entire data block during which the
channel is constant. Nevertheless, in a direct implementation of
DNC the dependence of the overall computational complexity on
MT is O(M4

T) just as for NC (here, we have set MR=MT for simplic-
ity). An efficient implementation of DNC whose overall complexity
is just O(M3

T) will be presented in a future publication. Note that
in contrast to DNC, the complexity of sphere-decoding [8] strongly
depends on the SNR and on the specific channel realization and that
it can be much larger than its average O(M3

T) complexity [9] .

3. SIMULATION RESULTS

We will now assess the symbol-error rate (SER) performance of
the proposed DNC scheme by means of simulation results. In
our simulations, we used 4-QAM modulation and MIMO channels
with iid Gaussian entries with unit variance. We applied DNC as
well as conventional MMSE-based NC (with layer sorting accord-
ing to minimum post-detection MSEs) to both the complex system
model and the equivalent real system model. The corresponding
schemes are denoted as DNC-C and DNC-R, respectively for the
DNC scheme and NC-C and NC-R, respectively for the NC scheme.
We also considered ML detection.

Fig. 1(a) shows the SER versus the SNR for the DNC-C and
DNC-R schemes and the various standard detectors for an (8,8)
channel. (The SNR is defined as E

{‖Hd‖2
}
/E

{‖w‖2
}

= MT/σ2
w.)

Fig. 1(b) shows the SER versus the number of transmit and receive
antennas MT = MR at an SNR of 15dB. The following conclusions
can be drawn from these results.

• DNC-R achieves near-ML performance over a wide range of sys-
tem sizes and SNRs.

• DNC-C outperforms NC for MT = MR ≥ 6; the performance gain
is greater for larger system sizes.

• DNC-R performs significantly better than DNC-C. This is be-
cause for the complex system model, DNC may consider a layer
as unreliable if just the real (or imaginary) part of that layer is
unreliable, although possibly the imaginary (or real) part may be
very reliable and should thus be used for interference cancella-
tion. For the real system model, the real and imaginary parts are
considered separately, which results in improved performance.

• NC-R performs slightly better than NC-C (cf. [14]).

4. SUMMARY AND CONCLUSIONS

We have presented the novel dynamic nulling-and-cancelling
(DNC) scheme, which is a nulling-and-cancelling MIMO detec-
tion scheme with “dynamic” layer sorting depending on the current
received vector. At each decoding step, the DNC scheme detects
and cancels the symbol and layer with maximum approximate a-
posteriori probability (APP). The approximate APPs are constructed
via a Gaussian approximation for the post-detection interference.
This results in an MMSE nulling scheme with a novel, simple layer-
sorting rule that is superior to the conventional rule based on mini-
mum post-detection MSEs. Our simulation results showed that the
proposed DNC scheme can yield near-ML performance for a wide
range of system sizes and signal-to-noise ratios. The performance
of DNC was seen to be best if the real and imaginary parts can be
decoded separately.
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