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ABSTRACT

Pair-wise error probability (PEP) is analyzed in the presence of
channel estimation error (CEE) for orthogonal frequency division
multiplexing (OFDM) in a quasi-static Rayleigh fading channel.
Subcarriers in OFDM are grouped in an equi-spaced manner with
the number of subcarriers in a group equal to the number of chan-
nel taps. One group is dedicated for training and the rest are for
data transmission. A linear minimum mean square error (LMMSE)
based channel estimation for coherent detection is considered in
this paper. This enables the signal dependent CEE to be uncor-
related to the data. Since ML decoding employed with perfect
CSI becomes suboptimal in the presence of CEE, an optimal ML
decoding is derived. It is observed from our training-based PEP
expression that the CEE does not reduce the diversity order but
contributes to a loss of coding gain. Moreover, a code design cri-
terion is established. To reduce the loss of coding gain, an optimal
training scheme is developed based on the PEP expression. Loss
of performance due to an imperfect channel estimate is quantified
in terms of bounds on bit error probability (BEP) for high SNR.
Our analytical findings are corroborated by simulation examples.

1. INTRODUCTION

With the increasing demand for high data rates, orthogonal fre-
quency division multiplexing (OFDM) has become an integral com-
ponent of various standards used in applications such as digital TV,
wireless LAN and asymmetric digital subscriber lines (ADSL).
The popularity of OFDM as an effective multicarrier technique for
wireless transmission is due to its ability to transform a frequency-
selective fading channel into parallel flat fading subchannels.

For coherent detection, the receiver needs to acquire the chan-
nel state information (CSI). The acquisition of CSI is convention-
ally performed by using the transmitted training sequences known
to the receiver. The accuracy of the estimated CSI greatly affects
the performance of the receiver. Therefore, it is imperative to as-
sess the effect of channel estimation error (CEE) and to optimally
design the training scheme to enhance the overall performance of
a communication system.

A unified approach for analyzing the BEP performance of var-
ious uncoded OFDM systems using an arbitrary linear pilot as-
sisted estimate of multiplicative channel response (CR) was pre-
sented in [1]. The authors obtained a closed-form BEP expression
that enabled the derivation of the LMMSE type optimal linear CR
estimate. In [2], for uncoded square QAM constellations, the effect
of CEE on BEP was captured in terms of normalized MSE. The av-
erage BEP was approximated in [3] in the presence of intercarrier
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interference (ICI) under the assumption that the estimated CR and
the CEE were almost uncorrelated. For uncoded BPSK transmis-
sion and a receiver equipped with one or several antennas in an un-
correlated scattering Gaussian multipath environment, an analyti-
cal expression for the BER performance was derived in [4] using
the imperfect channel estimates in the decoder. Here, the OFDM
symbol period was assumed to be of a much shorter duration than
the coherence time. One OFDM block was used for channel es-
timation while the rest of the OFDM blocks were decoded based
on the estimated channel. In [5], the BER was estimated using an
analytical method in the presence of CEE that involved truncation
of the union bound for a coded system. Although this method was
demonstrated as being effective for a channel of more than two
paths, there was no expression capturing the effect of CEE on the
pairwise error probability.

Unlike the approaches in the literature, we investigate the ef-
fect of CEE on the coding and diversity gains of (pre)coded OFDM
through PEP analysis. The PEP through the union-Chernoff bound
provides a good approximation for BER at high SNR and is exten-
sively used in performance analyses [6] to provide code design
guidelines such as the order of achievable diversity. In this paper,
the derived training-based PEP provides more insight about the di-
versity order, the loss of coding gain and the code design criteria in
the presence of CEE. Furthermore, an optimal power distribution
between training and data symbols is found, and bounds on the
performance loss in dB due to CEE are derived for equal and opti-
mal power allocation on the basis of our novel training-based PEP
expression. While similar optimal training designs based on the
maximization of a lower bound on average capacity were reported
in [7] and [8] they do not capture the loss in BEP peformance due
to CEE.

2. SIGNAL MODEL

Suppose we have an OFDM system with optimum equi-spaced
subcarrier grouping [9]. The input output relationship of the m-
th subgroup can be given by

xm = DHm
sm + wm, m = 1, · · · , M (1)

where M is the total number of groups each having K subcarriers
making for a total of P = MK subcarriers. xm, sm and wm

are the received, the transmitted and the additive noise subblocks
respectively with each of the vectors having K elements. DHm

is a diagonal matrix with the i-th diagonal element [DHm
]ii =

H(pmi
), where H(pmi

) :=
∑

L

l=0
h(l) exp(−2πlpmi

/P ). h(l) rep-
resents the l-th channel tap of the underlying L-th order FIR chan-
nel h := [h(0), h(1), · · · , h(L)]T and {pmi

= (i − 1)P/K +
(m − 1)}K

i=1 denotes equi-spaced subcarrier indices. In general
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sm ∈ S, where S denotes a set of complex numbers of finite
size constituting the alphabet of the constellation points for the
uncoded case. K symbols {s(pmi

)}K
i=1 are grouped together in

sm to be transmitted through the equi-spaced subcarriers indexed
by {pmi

}K
i=1. We assume that wm ∼ CN (0, σ2

wIK) and h ∼
CN (0, σ2

hIL+1) where IK is the identity matrix of size K. K is
assumed to be equal to L + 1 throughout this paper. Note that, for
simplicity, we omit the OFDM time symbol index, as all process-
ing is carried within a particular block. We will consider a scheme
where the t-th group is used for channel estimation:

xt = στDHt
st + wt (2)

where t ∈ [1, M ], σ2
τ denotes the average power of each of the

training subcarriers and thus 1
K

tr(sts
H
t ) = 1. Also note that st are

selected from an equi-powered constellation where each member
in the constellation has normalized unit energy, e.g., PSK. This is
because equi-spaced and equi-powered pilot symbols ensure opti-
mal performance of the channel estimator [8],[10]. Also, choosing
the size of the training subblock as K = L + 1 ensures maximum
throughput over the data subcarriers when optimal power alloca-
tion over the training and data symbols is performed [7],[8]. Here,
we chose equi-spaced and equi-powered L + 1 training symbols
whose power will be optimized based on the training-based PEP
expression. The remaining (M − 1) groups are used for the data
transmission and the d-th group can be considered for the analysis
of the performance:

xd = σδDHd
sd + wd (3)

where d �= t, d ∈ [1, M ], σ2
δ denotes the average power at each of

data subcarriers and thus 1
K

E{tr(sds
H
d )} = 1. The training and

data noise vectors wt and wd are independent and have the same
variance σ2

w. The transmit power is normalized to satisfy
1

P

[
σ2

τ tr
(
sts

H
t

)
+ σ2

δ (M − 1)E
{

tr
(
sds

H
d

)}]
= 1

⇒ 1

M

[
σ2

τ + σ2
δ (M − 1)

]
= 1(4)

where the last equality is obtained from the relation P = MK.
We can rewrite (2) and (3) as

xt = στDst
Vth + wt (5)

xd = σδDsd
Vdh + wd (6)

where Dst
and Dsd

are diagonal matrices with the (i, i)-th ele-
ment as [Dst

]ii = s(pti
), [Dsd

]ii = s(pdi
), vT (pti

) and v
T (pdi

)
are the i-th row of Vt and Vd respectively with v(pmi

) := [ 1,
exp(−2πpmi

/P ), · · · , exp(−2πLpmi/P )]T . Also note that our
choice of pmi

corresponds to a grouping that periodically inter-
leaves the subcarriers and hence yield Vt and Vd that are unitary:
VtV

H
t = V

H
t Vt = KIK and also VdV

H
d = V

H
d Vd = KIK .

3. MMSE CHANNEL ESTIMATION AND ML DECODING

Our goal is to derive the PEP when MMSE channel estimation
is performed. Therefore, we will assume that ĥMMSE is computed
from (5) using the knowledge of st and use ĥMMSE in (6) to decode
the unknown data sd. Using the orthogonality relationship, it is
straight forward to show that

ĥMMSE = στV
H
t D

H
st

(
σ2

h

σ2
τσ2

hK + σ2
w

)
IKxt

= K1h + K2w
′
t (7)

where K1 =
Kσ2

τ
σ2

h

σ2
τ

σ2

h
K+σ2

w

, K2 =
√

Kσ2

h
στ σw

σ2
τ

σ2

h
K+σ2

w

and w
′
t :=

1√
Kσw

V
H
t D

H
st

wt with the assumption that DH
st

Dst
= IK . Thus

w
′
t ∼ CN (0, IK). Note that ĥMMSE ∼ CN (0, σ2

ĥ
IK), with σ2

ĥ
=

K2
1σ2

h + K2
2 . Now let us rewrite (3) as

xd = σδD̂Hd
sd + σδD̃Hd

sd + wd, (8)

where D̂Hd
= diag(VdĥMMSE), and D̃Hd

= DHd
− D̂Hd

. Com-
muting D̃Hd

with sd, we obtain

xd = σδD̂Hd
sd + σδDsd

Vd((1 − K1)h − K2w
′
t) + wd︸ ︷︷ ︸

:= w̄sd

(9)

where the term associated with estimation error due to noise at the
training phase and the noise at the data phase are lumped together
and denoted as the signal dependent noise w̄sd

. This w̄sd
can be

shown to be uncorrelated with σδD̂Hd
sd using the orthogonality

principle of LMMSE. For a fixed sd, w̄sd
is zero mean Gaussian

distributed with covariance matrix

Rw̄sd
:=E

[
w̄sd

w̄
H
sd

]
=σ2

δ ((1 − K1)
2σ2

hM + K2
2M)︸ ︷︷ ︸

:= K3

Dsd
D

H
sd

+ σ2
wIK .

In decoding sd, we have at least two options. If there is no CEE,
i.e., the channel is known, the ML decision rule is

ML1: arg min
sd

‖ xd − σδDsd
Vdh ‖2 (10)

since, in this case h is known and wd is white. Hence a possibility
is to use ĥMMSE as if it were the true channel, i.e, use it in place of h
in (10). However, ML1 is not the ML estimator of sd unless Rw̄sd

is an identity matrix. In fact, the true ML estimator is ML2:

arg min
sd

{
K∑

i=1

[
log

[
K3|sdi

|2 + σ2
w

]
+

|xdi − [D̂Hd
]iisdi

|2
K3|sdi

|2 + σ2
w

]}
(11)

where xdi and sdi
are the i-th element of xd and sd respectively.

Notice that (11) will yield the same result as (10) if sd has constant
modulus entries that would make Rw̄sd

independent of sd. As
ML2 is more complex we will focus on ML1 for PEP analysis in
the presence of CEE.

4. PEP IN THE PRESENCE OF CEE

In the presence of CEE, we have the signal model in (9). There-
fore, using (10) for decoding gives us the following Chernoff bound
for the PEP:

P
(
sd → s

′
d|ĥMMSE

)
≤exp

(
−

σ2
δ
ĥH

MMSE VH
d

DH
e DeVdĥMMSE

4eHRw̄sd
e

)

≤exp

(
−

σ2
δ
ĥH

MMSE VH
d

DH
e DeVdĥMMSE

4βmax

)
(12)

=exp
(
−ĥ

H
MMSE A′

eĥMMSE

)
(13)

where βmax :=
[
K3ν + σ2

w

]
is the maximum eigenvalue of Rw̄sd

,

ν := max {|sdi
|2}K

i=1, De := Dsd
− Ds′

d
, e := σδD̂Hd

(sd −
s
′
d)/ ‖ σδD̂Hd

(sd−s
′
d) ‖, a unit vector, and the inequality in (12)

is obtained observing the fact that eHRw̄sd
e ≤ βmax. Equality in

(13) is obtained with A′
e :=

σ2

δ
V

H

d
D

H
e

DeVd

4βmax
. Thus the average

PEP is bounded as
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P
(
sd → s

′
d

)
≤ E

ĥMMSE

[
exp

(
−ĥ

H
MMSE A′

eĥMMSE

)]
=

r∏
i=1

1

1 + σ2
ĥ
λ′

i

≤

⎛
⎜⎜⎜⎜⎝

σ2
δ
K(K2

1σ2
h

+ K2
2 )

4 [K3ν + σ2
w]︸ ︷︷ ︸

f(στ ,σδ)

⎞
⎟⎟⎟⎟⎠

−r

r∏
i=1

∣∣∣sdi
− s′di

∣∣∣−2
(14)

≈

(
σ2

h
K

4σ2
w

)−r

(Mg(γ))−r
r∏

i=1

∣∣∣sdi
− s′di

∣∣∣−2
(15)

where σ2
ĥ

= (K2
1σ2

h + K2
2 ),

{
λ′

i =
σ2

δ
K

∣∣∣sdi
−s′

di

∣∣∣2
4[K3ν+σ2

w]

}r

i=1

is the

i-th eigenvalue of A′
e, r ≤ (L + 1) is the rank of A′

e, γ is the per-
centage of total power employed for training, i.e., γ := σ2

τK/P
and g(γ) := γ(1 − γ)/(ν − γ(ν + 1 − M)). Equation (15) can
be obtained using f(στ , σδ) ≈ σ2

hKMg(γ)/4σ2
w at high SNR

(σ2
w � 1) and is derived in Section 5. We include it here to show

that the diversity order is r ≤ (L + 1), the rank of A′
e, which is

the same as De. When there is no CEE, i.e., with ĥMMSE = h, we
have, K1 = 1, K2 = 0, K3 = 0 and σ2

δ = 1, i.e., (14) becomes

P
(
sd → s

′
d

) ≤
(

σ2
hK

4σ2
w

)−r r∏
i=1

∣∣sdi
− s′di

∣∣−2
(16)

which is the familiar expression for the known channel case [6].
Comparing (15) with (16), it is apparent that although the diversity
order r is not affected, there is loss of coding gain in the presence
of imperfect channel estimates. However, the code design criterion
that ensures maximum diversity, i.e, r = L+1 and minimum loss
of coding gain remains the same and is given by the maximization
of the product distance min∀sd �=s′

d

∏(L+1)
i=1 |sdi

− s′di|2 . Thus the
design of effective codes requires designing De such that it has full
rank. Group linear constellation precoder (GLCP) Θ, designed in
[9] is a good choice and with which sd = Θs̃d, where s̃d comes
from a finite alphabet of constellation.

5. OPTIMAL TRAINING AND LOSS OF PERFORMANCE

We assume that the transmitter can allocate different power to
training symbol and data, i.e., the σ2

τ and σ2
δ may not be equal.

From (15), it is apparent that the loss in coding gain due to error in
channel estimates can be optimized by choosing γ which allocates
the total power to training and data. Thus, for a fixed total bud-
get of power for an OFDM symbol, the power allocation among
the training and data subgroups affect the BER significantly. If
we allocate too much power for training, CEE will be reduced but
detectability of the data will be susceptible to noise due to weak
data SNR. On the other hand, lower power for training deteriorates
the estimated channel quality that results in poor detection even at
high data SNR. From (14), it is evident that PEP can be minimized
by maximizing f(στ , σδ) with respect to στ and σδ . Thus, the
following optimization problem can be formulated to obtain the
optimal value of στ and σδ .

{στopt , σδopt} = arg max
στ ,σδ

(
σ2

δK(K2
1σ2

h + K2
2 )

4 [K3ν + σ2
w]

)
︸ ︷︷ ︸

f(στ ,σδ)

(17)

with the power constraint of (4). By using

σ2
τ =

γP

K
, σ2

δ =
(1 − γ)P

(M − 1)K
, (18)

f(στ , σδ) can be maximized over 0 ≤ γ ≤ 1 and the optimal
γ = γopt can be obtained. This can be done numerically. However,
a closed form approximate expression of γopt for high SNR can be
obtained. With the assumption σ2

w � 1 we get K1 ≈ 1, K2 ≈
σw

στ

√
K

, K3 ≈ σ2

δ
σ2

w

σ2
τ

. Thus,

f(στ , σδ) ≈
σ2

δK
(
σ2

h +
σ2

w

σ2
τ

K

)
4

(
σ2

δ
σ2

w

σ2
τ

ν + σ2
w

) ≈ σ2
δσ2

hK

4σ2
w

(
σ2

δ

σ2
τ

ν + 1
) (19)

and using (18) in (19), we get f(γ) ≈ σ2
hKMg(γ)/4σ2

w, where
g(γ) = γ(1 − γ)/(ν − γ(ν + 1 − M)). Differentiating g(γ) the
following expression of γopt at high SNR denoted as γ∞ is ob-
tained:

γ∞ =

√
ν√

ν +
√

M − 1
. (20)

This expression of optimal power allocation at high SNR turns out
to be identical to the one in [7],[8] with ν = 1, e.g., uncoded
OFDM with unit energy PSK constellation, although their opti-
mality criterion was a lower bound of average training-based ca-
pacity.

Comparing (15) and (16), we can quantify the loss of perfor-
mance due to CEE for a particular value of γ at high SNR.

[P (sd → s
′
d)]perfect

[P (sd → s′d)]
imperfect

≤
⎡
⎣ σ2

δ

σ2

δ

σ2
τ

ν + 1

⎤
⎦r

=

[
Mγ(1 − γ)

ν − γ(ν + 1 − M)

]r

(21)
Therefore for equal power allocation, i.e., for γ = 1

M
, with σ2

τ =

σ2
δ = 1, we have the following bound.

[P (sd → s
′
d)]perfect

[P (sd → s′d)]
imperfect

≤
[

1

ν + 1

]r

(22)

Similarly, for γ∞, we reach the following bound.
[P (sd → s

′
d)]perfect

[P (sd → s′d)]
imperfect

≤
[
M

(√
ν +

√
M − 1

)−2
]r

(23)

Thus, using the union bounds on BEP, (22) and (23), it can be
shown that channel estimation incurs no more than 10log10(ν +

1) dB and 10log10(M
(√

ν +
√

M − 1
)−2

) dB loss with equal
power and optimal power allocation respectively from the perfor-
mance when the channel is perfectly known. Notice that for un-
coded PSK constellations, ν = 1 and the loss is about 3 dB for the
equal power training.

6. SIMULATION EXAMPLE

We demonstrate the effect of channel estimation and optimal power
allocation with GLCP-OFDM [9] and uncoded OFDM. Here, the
parameters are P = 16, L = 1, K = L + 1 [9]. The channel
is complex Gaussian with σ2

h = 1/(L + 1) and are fixed for one
OFDM symbol. Both st and s̃d are chosen from the normalized
unit energy QPSK constellation. The precoder Θ is obtained from
Table I in [9] and normalized such that tr{ΘΘ

H} = K. Through
simulations, ν is found to be 1.7071 for each of the code words, sd,
in GLCP-OFDM. f(γ) = f(στ , σδ) in (17) and simulated BER
graphs are plotted as a function of γ and shown in Fig. 1 for differ-
ent SNR values. We observe that BER graphs are minimum around
γopt, where f(γ) is maximum. Thus, the effectiveness of the pro-
posed optimal power distribution based on training-based PEP is
verified. From (20) we get γ∞ = 0.3306 that matches closely the
γopt obtained numerically for different SNR validating the expres-
sion in (20). Fig. (2) shows the BER performance with respect to
SNR, using the ML1 in (10) and ML2 in (11) for different values
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Fig. 1. f(γ) and BER (marked with arrow) vs. γ for GLCP-
OFDM
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Fig. 2. Effect of channel estimation and power allocation on
GLCP-OFDM

of γ. We observe that training with higher values as well as lower
values of γ results in high BER. Training corresponding to γ∞
yields the near-optimal performance. Comparing with the perfor-
mance having perfect CSI, it is evident that the cost of acquiring
CSI with optimally powered pilot is about 1.13 dB and the inaccu-
rate CSI further incurs about 1.8 dB loss. Therefore, the total loss
with optimal training is about 2.9 dB and for equal power training
the loss is about 3.9 dB. The derived bounds in (22) and (23) give
us about 3 dB and 4.3 dB loss respectively. Thus, the bounds are
tight. It is also evident that at high SNR the true ML gives slight
improvement over ML1 when channel estimate is relatively poor,
e.g., with γ = 0.03125. For good quality channel estimates, e.g.,
with γ = 0.875, performance of ML1 and ML2 are similar. Fig.
3 illustrates the case of uncoded OFDM where ν = 1 and con-
sequently γ∞ = 0.274. Both ML1 and ML2 perform the same
when sd has constant modulus entries. There is about 2 dB loss
for optimal power allocation, whereas about 2.8 dB loss for equal
power allocation. The bounds for these power allocation schemes
as obtained from (23) and (22) are 2.2 dB and 3 dB respectively,
demonstrating the tightness of the bound.

7. CONCLUSION

We have considered PEP analysis for OFDM in the presence of
channel estimation error. It is observed that the use of LMMSE
channel estimator does not reduce the diversity but causes loss of
coding gain. For a given power budget, this loss is reduced, by
optimal power allocation between equi-spaced pilot symbols and
equi-spaced data symbols based on the upper bound on average
training-based PEP expression. Also upper bounds of SNR (in
dB) loss due to training are obtained for optimal and equal power
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Fig. 3. Effect of channel estimation and power allocation on un-
coded OFDM

allocation at high SNR.
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