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ABSTRACT

In this paper, we study DFT-bank transceivers with filter length
longer than the block size. We show how to optimize the DFT-bank
transceiver so that both the intra-band and cross-band interferences
are minimized for unknown multipath channels. No costly post
processing technique is needed and the only channel dependent
part is a set of one-tap equalizers at the receiver. The optimization
problem is formulated as a Rayleigh-Ritz ratio whose solution is
well-known. Experiments are carried out for transmission over
random multipath channels and the results show that satisfactory
SIR performance can be obtained.

1. INTRODUCTION

The OFDM (orthogonal frequency division multiplexing) and DMT
(discrete multitone) techniques have found many applications in
both wireless and wired transmissions [1]. These systems have low
complexity and can effectively combat intersymbol interference
(ISI). However the DFT filters suffer from very poor frequency re-
sponses. The stopband attenuation is only 13dB and it decays at a
rate of

� � �
only. In many applications, it is often desirable to have

filters with better frequency responses.
Many solutions have been proposed for the design of transceivers

with better transmitting and receiving filters. In particular, the fil-
ter bank approach [2] [3] [4] has drawn many attentions recently.
In [2], the authors propose the so-called discrete wavelet multitone
(DWMT) system, in which perfect reconstruction (PR) filter bank
is used as the transceiver. For multipath channels, there is intra-
band as well as cross-band interference in these transceivers. Un-
like the OFDM system, there is no simple equalization technique
for DWMT systems. Comparisons and performance evaluations of
these filter bank transceivers have been conducted in [3]. The re-
sults show that though the filter bank has near PR property, the ISI
introduced by the channel can seriously degrade the system perfor-
mance. To reduce the amount of ISI, intra- and cross-band equal-
ization are performed on the receiver outputs in [2]. Filter bank
transceivers that enjoy the ISI-free property for unknown multipath
channels have been studied in [4]. By judiciously placing the zeros
of the transmitting filters, the authors in [4] showed that the pro-
posed AMOUR transceiver can obtain ISI-free transmission by us-
ing a Vandermonde matrix at the receiver. However, the AMOUR
transceiver belongs to the class of block transmission schemes, i.e.
transmitting filter length restricted to the block size. Moreover
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there is no simple method to design AMOUR transceivers with
good frequency responses.

In this paper, we design DFT-bank transceivers for multipath
fading channels. Although the proposed transceiver belongs to
the class of overlapping-block transmission, the only channel de-
pendent part is a set of one-tap equalizers at the receiver, like
the OFDM system. For a set of good receiving filters, the trans-
mitting prototype filter can be optimized so that SIR (signal-to-
interference ratio) is maximized. Conversely, we can also design
the receiving prototype filter to maximize SIR given transmitting
filters. We show that such an optimization problem can be formu-
lated as a Rayleigh-Ritz ratio, whose solution is well known [5].
Simulation results show that DFT-bank transceivers with satisfac-
tory SIR value can be obtained.

2. ISI-FREE DFT-BANK TRANSCEIVERS

Fig. 1 shows a filter bank transceiver. The number of bands is�
whereas the up/downsampling factor is � . We assume that

� � �
. The number of redundancy samples is � 
 �

. We
consider only DFT-bank transceiver where the transmitting filters� 
 � � �

and the receiving filters � 
 � � �
are DFT modulated versions

of the prototypes
� � � � �

and � � � � �
respectively. Their relation is

given by

� 
 � � � � � � � � � 
 � � � 
 � � � � � � � � � 
 � �  " $ & $ � � ) * + , ./ �
(1)

for
� 1 3 1 � 
 � 5

Let 6 8 and 6 9 be respectively the orders
of

� � � � �
and � � � � �

. In this paper, both 6 8 and 6 8 can be larger
than � . The advance element

� : ;
, where < �

is an arbitrary integer,
is added at the receiver for the convenience of discussion. We
assume that the transmission channel does not vary rapidly so that
it can be modeled as an LTI channel with transfer function = � � �

,
as shown in Fig. 1. Let > be the channel order so that = � � � �

@ BC D � F � 6 � � * C
.

Using multirate identities, one can verify from Fig. 1 that the
transfer function from H J � 6 �

to KH + � 6 �
is an LTI system:

L + J � � � � O � J � � � = � � � � : ; � + � � � Q R S
(2)

� BT
: D � F � < � O � J � � � � + � � � � : ; * : Q R S �

where
O V Q R S

denotes the � -fold downsampling operation. From
the above equation, it is clear that the DFT-bank transceiver is ISI-
free for unknown multipath channels if

L + J � � � � X J � * C ; Y � Z 
 \ � 5
(3)
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Figure 1: A filter bank transceiver.

Because � �
is an arbitrary integer, we can assume � � � �

without
any loss of generality. In this paper, we set � � � �

. From (2)
and (3), one can immediately conclude that interchanging the roles
of transmitting and receiving filters does not change the ISI-free
property. Define the sequences � � � � � � 	

and � � � 
 � � � � 	
as:� � � � 
 	 � 
 � 
 	 
 � � � � � � � � 
 � � � � � � 	 � � � � � �� � � � � � � � 	 
 � � � � � �

� � � � � 
 � � � � 	 
 � � � �� � �
(4)

for
� � � � � �  ! "

and
� � � � # . Note that � � � 
 � � � � 	

is not
defined for � �� �

. For convenience, we define� � � � � � � � 	 � � � � � & � � � � � � � � '
Using these sequences, the ISI-free condition can be rewritten as� � � � � � 	 � � � � � � � 	 ( � � 	 � � � � 
 � � � � 	 � � � � & � � � � � � � � � � '
Whenever we have � � � � � � 	 �� �

for � �� �
or � � � 
 � � � � 	 �� �

, then� � � � � � 	
and � � � 
 � � � � 	

contribute respectively to the intra-band and
the cross-band intersymbol interference.

Recall that the transmitting and receiving filters are DFT mod-
ulated versions of prototype filters. Using this fact, one can show
the following lemma (see [6] for a proof).

Lemma 1 For DFT modulated filter bank transceivers with filters
defined in (1), the sequences � � � � � � 	

and � � � 
 � � � � 	
defined in (4)

satisfy � � � � � � 	 � + � � ! � � � � " � $ � � � � � � 	� � � 
 � � � � 	 � + � � ! � � � � " � $ � � � ! ! 
 � � $ $ - � � � � 	 �
where

� � � ! � 	 	 &
represents

� � ! � 	
m ' ( * � '  

.

Using Lemma 1, the ISI-free condition can be further simplified
as: � � � � � � 	 � � � � � � � 	 ( � � 	 � � � � 
 � � � � 	 � � � � � & � � � � � � � � '

(5)

When the transceiver achieves the ISI-free condition, any frequency
selective channel . � � 	

with order
� # is converted into a set of

 
parallel frequency nonselective subchannels. The gain of the � th
subchannel is given by

/ � � 01
� � � . � � 	 � � � � � � 	 � + � � � � 01

� � � � � � � � � 	 + � � . � � 	 '

Note that � � � � � � 	
and � � � 
 � � � � 	

are functions of the prototype
filters , � � � 	

and
3 � � � 	

. Using (4), one can write-.../ � � � � � � 	� � � 0 � � 	
...� � � 0 � � 	

1 2223 � 4 � � 	
-.../ 3 � � � 	

3 � � " 	
...3 � � � 6 	

1 2223

-.../ � � � 
 � � � � 	� � � 
 � 0 � � 	
...� � � 
 � 0 � � 	

1 2223 � 5 
 � � 	
-.../ 3 � � � 	

3 � � " 	
...3 � � � 6 	

1 2223 �

where
4 � � 	

and
5 
 � � 	

are
� # � " 	

by
� � 6 � " 	

matrices and their
entries consist of the impulse response , � � � 	

. The exact forms
of these matrices are given in the Appendix B of [6]. Define the
vectors 6

� 8�
-.../ 3 � � � 	

3 � � " 	
...3 � � � 6 	

1 2223 � 9 8�
-.../ � � � � � � 	� � � 0 � � 	

...� � � 0 � � 	

1 2223 '

Then the ISI-free conditions in (5) can be written as4 � � 	

6
� � 9 ( � � 	 � 5 
 � � 	

6
� � < '

(6)

3. DESIGN OF DFT-BANK TRANSCEIVERS

In many applications, it is often desired to have transmitting filters
or receiving filters with good frequency responses. Depending on
applications, our design problem is either (1) given a good lowpass
transmitting prototype filter

� � � 
 	
, design the receiving prototype

filter � � � 
 	
to achieve the ISI-free property or SIR maximization,

or (2) given a good lowpass receiving prototype filter � � � 
 	
, de-

sign the transmitting prototype filter
� � � 
 	

to achieve the ISI-free
property or SIR maximization. As interchanging the roles of the
transmitting and receiving filters does not affect the ISI-free prop-
erty, Problem 1 can be easily formulated into Problem 2, and vice
verse. In this paper, we will study Problem 2 only. Hence in the
rest of the paper, � � � 
 	

is a predetermined good lowpass filter.

3.1. Least-Squares Solution

Recall the ISI-free condition given in (6). For a fixed � � � 
 	
, our

goal is to design
� � � 
 	

so that (6) is satisfied. One way to solve
this problem is to use the least-squares method. One can write the
conditions in (6) as a single matrix equation:=

6
� � ? 9 < A '

When the desired parameters
9

are known, one can use the least-
squares method to solve the above linear equations and obtain

6
� � 0 C � � = F = 	 � 0 = F ? 9 < A '

(7)
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In many applications, it is desired to have transceivers that maxi-
mize SIR. In this least-squares approach, the optimal � � � � � � �

that
maximizes SIR is not known.

3.2. SIR-Optimized Solution

In the following derivation, we will assume that the input signals
� � � � �

satisfy� � � � � � � � �� � � � � 	 	 � 
 � � 
 � � 
 � � 
 � � �
(8)

where
	 �

is the symbol energy. This mild assumption can be satis-
fied by properly interleaving the input data. We will consider two
cases: (i) known channel and (ii) multipath fading channel.

Known Channels: In this case, the impulse response � � � �
is known.

One can write the output of the
�
th subchannel as

�� � � � � 	 � ��
� � � � � � � � � � � � � � � � � � � � � ��

� � � � � � � � � � � � � � � 


� � � � � � � 
 � � � 	 
 � � � � � � 
 � ��
� � �

��
� � � � � � � � � � � � � � � � 
 � � � � � �

where 
 denotes convolution. The three summation terms on the
right hand side are respectively the desired signal, the intra-band
and cross-band intersymbol interferences. Using (8), one can ex-
press the signal and interference powers at the

�
th subchannel as

� � � � � � � 	 	 � ���
��

� � � � � � � � � � � � � � � ��
�

� � � �� � � � � (9)

� � � � � � � 	 	 � � �
� � � �� �

���
��

� � � � � � � � � � � � � � � ��
�

� � � �� � � � �
� �

� � �
���

��
� � � � � � � � � � � � � � � � � ��

�
� � � �� � � � �

 �

(10)
The SIR expression is given by

! " # % 	 � 
 � �� � � ' � � � �
� 
 � �� � � ' � � � � � � 
 � �� � � ' � � � � �

Using the results in Lemma 1, we can write
 � ��
� � � ' � � � � 	


 � ��
� � �

���
��

� � �
! � � � � � � � � � � � � � � ��

� 	 ))) + � � � , % � )))
� �

where . / . denotes the 2-norm of / . The diagonal matrix , % 	� � 2 4 " � � � � � � # � � � � � � $ � &
and + � � � is the

'
by

� $ � # �
ma-

trix formed by the first
� $ � # �

columns of the DFT matrix + .
Substituting

� 	 � � � �

�
�

into the above equation, we get
 � ��
� � � ' � � � � 	

�
�� � � � � � � , �% + �� � � + � � � , % � � � �� � � �5 �

 
�

� �

Similarly it can be verified that we can write
 � ��
� � � ' � � � � 	

�
�� 7 �

�
�


 � ��
� � � ' � � � � 	

�
�� 7 �

�
� �

where7 � 	 �
� � � �� �

� � � � � , �% + �� � � + � � � , % � � � �

7 � 	 �
�


 � ��
� � � � �� � � � , �% + �� � � + � � � , % � � � � � �

Using these results, we can write SIR as

! " # % 	

�
�� 7 �

�
�

�
�� � 7 � � 7 � �

�
� �

Since 7 � is positive definite (except for some rare cases), the above
SIR expression is a Rayleigh-Ritz ratio [5]. The optimal

�
�

can be
found by solving an eigen problem.

Multipath Fading Channels: In many applications, � � � �
might

not be available and we may have only the statistics of the trans-
mission channels. Consider multipath fading channels with

� $ � # �
taps � � � �

for
� , � , $ . Assume that � � � �

are complex random
variables that satisfy� � � � � � � 	 � �

� 9
� � � � � � � � 
 . � : 	 < �� 
 � . � �

for
� , � , $ . In this case, we consider average powers. Tak-

ing the expectation of (9) and (10) with respect to � � � �
and using

Lemma 1 to simplify the results, we get

=� � � � � � � 	 	 � ��
� � � ? � � � � � � � ? � < ��� � � �@ � � � �

=� � � � � � � 	 	 � � �
� � � �� �

��
� � � ? � � � � � � � ? � < ��� � � �@ � � � �

� �
� � �

��
� � � ? � � � � � � � � � ? � < ��� � � �@ � � � �

 �

The average SIR is therefore given by

! " # 	 � 
 � �� � � B � � � �
� 
 � �� � � B � � � � � � 
 � �� � � B � � � � �

Similar to the previous case, one can verify that
 � ��
� � � B � � � � 	

�
�� � � � � � , D � � � �

�
�


 � ��
� � � B � � � � 	

�
�� � �

� � � �� �
� � � � � , D � � � �  

�
�
 � ��

� � � B � � � � 	

�
�� � �

�


 � ��
� � � � �� � � � , D � � � � �  

�
� �

where , D is the diagonal matrix � � 2 4 " < �� < �� � � � < �� &
. From the

above expressions, one can clearly see that the average SIR can
also be formulated into a Rayleigh-Ritz ratio. The optimal

�
�

can
be obtained by solving a corresponding eigen problem. When no
channel information is available, the channel is often modeled as
iid channels. In this case, the results can be obtained by setting< � 	 #

and the transceiver becomes channel independent.
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The Choice of
� � �

: Note that
� � � �

and
� � � � �

depend on the
choice of the integer 	 


. One has to search for the best 	 

to maxi-

mize either
� � � �

or
� � �

. In our simulations, we find that the best
	 


always falls within the range of � � 
 � � 	 
 � � � � � � � � 
 � �
� 
 �

.

4. SIMULATIONS

In the examples, the receiving prototype filter � 
 � � �
is a unit norm

lowpass filter designed using the eigenfilter method. The coef-
ficients � 
 � � �

are designed to minimize � �� 	 � � 
 � � � � �
�

�
� 
 �

The
channels � � � �

are multipath fading channels. The coefficients � � � �
are independent circular complex Gaussian random variables with
variances

	 �� . We have used 10,000 random channels in the ex-
periments. All the SIR values shown in the plots are computed by
taking the average value over 10,000 random channels.

Example 1. In this example, we design transceiver with
� � � �

and � � � �
. The receiving prototype filter � 
 � � �

has � � � � � �
,


 
 � � � � � � �
and a stopband attenuation of more than 61 dB.

The random channels are iid channels with
� � � � �

taps. The SIR
curves for � � �  �  � �

are shown in Fig. 2. We can obtain a
moderate SIR value even when the receiving filter has a 61 dB
stopband attenuation.

Example 2. We take
� � � �

, � � � �
and � � �

. The re-
ceiving filter prototype � 
 � � �

has � � � � �
, 
 
 � � � � � �

and a
stopband attenuation of 61 dB. The random channels have an ex-
ponentially decay delay profile and

	 �� � � �
� �

� " �
. We consider

3 scenarios: (i) the channel impulse response � � � �
is known; (ii)

only
	 �� is known; and (iii) no channel information is available

and we assume iid channels. In Case (i), we design an optimal
transceiver for each of the 10,000 random channels, whereas in
Cases (ii) and (iii), we design only one optimal transceiver. The
cost of designing optimal transceivers for known channels is sig-
nificantly higher. The results are shown in Fig. 3. As we might
expect, if � � � �

is known, the transceiver will have the best SIR
performance. Comparing Case (i) and Case (ii), the improvement
is not significant. If we compare Case (ii) and (iii), we can obtain
a moderate gain. Hence incorporating the channel profile in the
design can significantly increase the SIR performance.

5. CONCLUSIONS

In this paper, we study DFT-bank transceivers with filter length
longer than the block size. Given a fixed receiving (or transmit-
ting) prototype filter, we have shown that the problem of finding
the best transmitting (or correspondingly receiving) prototype fil-
ter that maximizes the SIR can be formulated as a Rayleigh-Ritz
ratio. Though our discussion is restricted to the case of DFT modu-
lated filters, the results can be generalized to the case of non modu-
lated filters. Moreover, in some cases there is no loss of generality
in assuming that the optimal transmitting filters are DFT modu-
lated version of a prototype filter [6].
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