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ABSTRACT

In this paper, we present a design of linear codes which im-
proves the Bit Error Rate (BER) performance for multiple-
input multiple-output (MIMO) communication system un-
der a flat-fading environment in which the channel infor-
mation is unknown for the transmitter but known at the re-
ceiver. Recently, space-time codes have been designed to
achieve capacity and/or minimize the overall mean square
error. Our codes here simultaneously achieve the lower
bound of BER, the upper bound of the overall signal to in-
terference plus noise ratio (SINR) and the lower bound of
substream minimum mean square error. Our code structure
is orthogonal in both overall and individual senses.

1. INTRODUCTION

MIMO wireless systems are important due to their potential
for high data rate and/or diversity. Many existing space time
codes using large number of antennas suffer from being im-
practical either because of their complexity or because of
their inferior performance at high data rates. One approach
which attempts to achieve high data rate while having rea-
sonable complexity is VBLAST [1]. However, this is done
at the expense of diversity gain. The design of linear space
time block codes (STBC) by maximizing the mutual infor-
mation based on Maximum Likelihood (ML) detection has
been studied numerically [2] and theoretically [3], however,
there was no guarantee for full diversity. Another important
scheme is the Orthogonal STBC which ensures full diver-
sity but suffers from low transmission data rate[4]. A full
diversity full rate coding structure is presented in [5][6][7].

This paper considers a MIMO system which uses a lin-
ear detector for its simplicity. The goal here is to design
codes that satisfy certain optimum criteria while maintain-
ing the same transmission data rate as VBLAST. To ensure
that the transmission data rate is maintained, we constrain
our code to be a linear combination of the data. We then
obtain the optimal design of the codes based on our criteria
which are developed in two stages. First, we maximize a
special SINR resulting in codes having an overall orthogo-
nal structure that ensures high diversity gain. Second, we

minimize the mean-square error (MSE) of each substream
resulting in the coding matrix having an individual orthog-
onal structure. By analyzing its performance, we show that
the codes so designed are optimum in that they achieve the
lower bound of the average BER. Simulation results show
that our design outperforms VBLAST and OSTBC in BER
while maintaining the same transmission data rate.

2. MIMO FLAT-FADING SYSTEMS WITH LINEAR
CODING
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Fig.1 Original System Model

Consider the MIMO communication system shown in
Fig.1 in which there are M transmitter antennas and N
(N ≥ M ) receiver antennas. The channel is assumed to be
flat-fading having zero-mean normalized iid random Gaus-
sian coefficients hij , i = 1, · · · , M ; j = 1, · · · , N which
remain constant for T (M = T ) time slots. There are, in
total, L (L = MT ) data symbols si, i = 1, · · · , L, ran-
domly selected from a given constellation with zero mean
and unity covariance (e.g. M -ary PSK). Each symbol is
processed by an M × T coding matrix Ci, i = 1, · · · , L,
and is then transmitted during the T time slots in the form:
X =

∑L
i=1 siCi, where the M × T matrix X is the com-

bined coded signal. The total power assigned to all the cod-
ing matrices is a constant c, such that

∑L
i=1 tr CH

i Ci = c,
where “tr” denotes trace.

Let the N × T matrix W be the white Gaussian noise
of distribution CN (0, 1) at the receiver antennas. Then the
received signal Y with dimension N × T can be expressed
in the following matrix form,

Y =
√

ρ

M
HX + W (1)

IV - 7250-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡



where H is the N × M channel matrix with elements hij ,
and ρ is the signal to noise ratio per receiver antenna.

By vectorizing both sides of (1) and defining two new
matrices: F = [vec(C1), · · · , vec(CL)

]
, H = (IT ⊗ H)F,

where I is the identity matrix and T stands for the dimen-
sion, (1) can be written in the following equivalent form,

y =
√

ρ

M
Hs + w (2)

where y = vec(Y), s = [s1, s2, · · · , sL], and w =
vec(W).

3. MMSE EQUALIZER: PERFORMANCE BOUNDS

For the equivalent system model (2), we employ a Minimum

MSE equalizer G =
√

M
ρ (M

ρ I+HHH)−1HH to facilitate

threshold detection.

3.1. Coding Structure by Maximizing a Special SINR

Consider the SINR at the receiver after the equalizer of
the MIMO system in (2). The received signal is given by
ŝ =

√
ρ
M [diag(GH)s] whereas the interference and noise

are given by u =
√

ρ
M [GH−diag(GH)s] and ν = Gw re-

spectively, where diag(·) denotes a diagonal matrix formed
with the diagonal elements of a square matrix. Therefore,
the SINR is given by

SINRT =
tr Rŝ

tr (Ru + Rν)
(3)

where Rŝ, Ru and Rν are the covariance matrices of the
received signal ŝ, the received interference, and the received
noise respectively. However, to arrive at an optimum code
design which is tractable, we rewrite the equalized signal as
Gy = s+

√
ρ
M (GH−I)s+Gw so that only the perfectly

reconstructed symbols s is considered as the received signal
and the rest of the distortion on the symbols is considered
as interference. Thus, we arrive at an alternative definition
of the SINR:

SINRA =
tr Rs

tr Rint+n
(4)

where Rs is the covariance matrix of s, being equal to IL

in this case, and the covariance matrix for interference plus
noise Rint+n is given by

Rint+n = E

{
(I +

ρ

M
HHH)−1

}
(5)

To arrive at an optimum code, we seek to maximize the
SINRA in (4). Since tr Rs is a constant, we can equiva-
lently minimize tr Rint+n. Defining A � FFH , the power
of interference plus noise in (5) can be written as

tr Rint+n = E

{
tr [I +

ρ

M
A1/2(I ⊗ HHH)A1/2]−1

}
(6)

Lemma 1 Given any nonsingular Hermitian symmetric
Positive Semi-Definite (PSD) matrix Z in block form: Z =[

D B
BH C

]
with D and C being nonsingular Hermitian

symmetric PSD, we have

tr Z−1 ≥ tr D−1 + tr C−1

where equality holds iff B = 0, i.e., Z is block diagonal.
Let M × M matrix Ai, i = 1, · · · , T denote the sub-

matrix on the diagonal of A, then according to Lemma 1,
(6) is lower-bounded by

tr Rint+n ≥
T∑

i=1

E

{
tr [I +

ρ

M
A1/2

i HHHA1/2
i ]−1

}
(7)

Applying eigen-decomposition (ED) to each submatrix such
that Ai = UiViUH

i with Ui unitary and Vi nonnegative
diagonal, (7) becomes,

tr Rint+n ≥
T∑

i=1

E

{
tr [I +

ρ

M
HHHVi]−1

}
(8)

where we have used the invariance of the stochastic property
of H when right-multiplied by a unitary matrix [8].

Now let’s consider the following optimization problem,

min
Vi

:
T∑

i=1

E

{
tr [I +

ρ

M
HHHVi]−1

}
(9)

s.t. :
∑

i

tr Vi = c.

where the power constraint is equivalent to the original one
since

∑
tr Vi = tr A =

∑
tr CH

i Ci = c. We intro-
duce the permutation matrices Pp, p = 1, · · · ,M !, and
modify the second term in the bracket of the cost func-
tion to ρ

M PH
p HHHPpVi without changing the value of

cost function. Now, we perform Cholesky decomposition
on HHH = ΦHΦ where Φ is M × M upper triangular
matrix. Thus, the cost function in (9) becomes

T∑
i=1

E

{
tr [I +

ρ

M
ΦPpViPH

p ΦH ]−1

}
(10)

The rearrangement of the diagonal elements of Vi by Pp

does not change the value of cost function. If we find the
average of all the expected values in (9) over all the possi-
ble ways of permuting (i.e. M !), the value will remain un-
changed. However, since (10) is a convex function over the
matrix inside the inverse computation, by Jensen’s inequal-
ity, the quantity inside the first sum in (10) will be lower-
bounded by the value when Vi = 1

M !

∑M !
p=1 PpViPH

p =
tr Vi

M I, i.e., the lower bound for (10) is

T∑
i=1

E

{
tr [I +

ρ

M2
(tr Vi)HHH]−1

}
(11)
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Since (11) is still a convex function, we can use Jensen’s
inequality again to obtain the lower bound for (11) which
can be achieved when tr Vi = c

T , i.e.,

TE

{
tr [I +

ρ c

M2T
HHH]−1

}
(12)

The type of problem as shown in (12) has been solved [9]
and the quantity in (12) is given by

T

M

∫ ∞

0

1
1 + cρ

M2T λ

M∑
i=1

ϕi(λ)2λN−Me−λdλ (13)

where, ϕ(λ) =
[

k!
(k+N−M)!

]1/2

LN−M
k (λ), k = 0, 1, · · · ,

M − 1, and LN − M
k (x) = 1

k!e
xxM−N dk

dxk (e−xxN−M+k)
is the associated Laguerre polynomial of order k.

In summary, the optimal solution to (9) is Viopt =
c

MT IM , i = 1, · · · , L. (13) yields the optimal value (i.e.,
a reachable constant lower bound) of cost function in (9),
which is a further lower bound of tr Rint+n in (8). Thus,
when equality in (8) holds, i.e., A is block diagonal, and
Vi = c

MT IM , (13) becomes the minimum value of tr
Rint+n. Recall that Vi is the eigen-value matrix of Ai

which is the ith block sub-matrix forming the diagonal of
A = FFH . Therefore, Aopt = c

MT IL, and F is a uni-
tary matrix multiplied by a constant governed by the power
constraint. By definition, F = [vec(C1), · · · , vec(CL)].
Hence, the overall structure for the optimal codes is

tr CH
i Cj =

c

L
δ(i − j), i, j = 1, · · · , L (14)

where δ(x) =
{

1 if x = 0
0 else

.

3.2. Optimal Coding Matrix Structure by Substream
Performance

Eq.(14) tells us that to maximize the SINRA, each Ci should
be allocated equal power. However, the inside structure of
each Ci is still undetermined. We will now explore this by
considering the MSE performance of the substreams.

The MSE matrix of the system (2) employing the coding
structure in (14) is [10]

Err =
L

c
E{FH [I +

cρ

ML
I ⊗ HHH]−1F} (15)

The MSE of ith substream ei is the iith element of Err,

ei =
L

c
E{tr [CH

i (I +
cρ

ML
HHH)−1Ci]} (16)

Here, we want to minimize the largest MSE among all the
substreams. We note that,

max{ei} ≥
∑L

i=1 ei

L
=

tr Err

L
(17)

By substituting (15) into (17), the right hand side of (17)
can be written as,

TE{∑M
i=1

1
1+ cρ

ML λi
}

L
(18)

where λi is the eigen-value of HHH. Through similar steps
as those for (13), we can obtain a close form expression for
(18) which is a constant. Thus, the optimal value is achieved
when equality in (17) holds, i.e. ei = ej for all i and j.
Now, from the expression of ei in (16) together with the
consideration of the code structure in (14), to ensure that all
ei are equal for all i, we see that one optimal solution is

CH
i Ci =

c

ML
IM , i = 1, · · · , L (19)

3.3. BER Performance of the Optimal Codes

We now examine the BER performance of our codes when
s is BPSK. For the ith symbol of s in the equivalent model
of (2), if there is a large number of interference sources,
the interference plus noise for ith symbol can be treated as
Gaussian (Central Limit Theorem). Then, the error proba-
bility for ith symbol is

Pei = Q

(√
2SINRTi

)

where Q(x) = 1√
2π

∫ ∞
x

e−z2
dz and SINRi is the SINRT

associated with the ith received symbol of s that is given by

SINRi =
Psig

Pall − Psig
=

1
Pall
Psig

− 1

where Psig and Pall are the power of the ith received signal
ŝi and the total power of signal, interference and noise at ith
receiver. From [10],

Psig = {[
√

ρ

M
GH]ii}2

Let a � [
√

ρ
M GH]ii, then

a =
L

c
tr {CH

i ΥCi} (20)

where Υ = (I + cρ
MLHHH)−1( cρ

MLHHH) is a symmetric
PSD matrix. At the same time, in system model (2),

Pall = [
ρ

M
GHHHGH + GGH ]ii

After some simplifications, we have

SINRi =
1

1
a − 1
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The average BER of the detected signal is thus,

Pe =
1
L

L∑
i=1

Q

(√
2

1
L
c tr {CH

i ΥCi} − 1

)
(21)

Now, Q(
√

2
x ) is a convex function of x when x < 4

3 , i.e.,

when a > 3
7 . If this condition is satisfied, we can find the

lower bound for Pe by Jensen’s inequality such that

Pe ≥ Q

(√√√√ 2
1
L

∑L
i=1

1
L
c tr {CH

i ΥCi} − 1}

)
(22)

with the equality reached when all the terms under sum-
mation are equal for all i. This can be achieved if Ci has
the unitary structure as in (19). To obtain the condition for
which convexity of (21) is satisfied, we substitute the values
of a from (20). Using the usual manipulations of ED and
simplifying, we obtain

cρ

ML
λ >

3
4

(23)

(23) is a sufficient condition for (21)to be convex. It im-
plies that when the total coding power c or SNR per receiver
antenna ρ is high or the channel attenuation is low, such
that the inequality in (23) is satisfied, our codes achieve the
lower bound of BER.

4. SIMULATIONS

In this section, we provide simulation results comparing the
BER performance between VBLAST [2], Orthogonal de-
sign [4] and our optimal codes under the same transmission
data rate R = 6 bits per channel use where M = 3 trans-
mitter antennas and N = 4 receiver antennas are used. Our
flat-fading channel is generated by selecting from normal-
ized Gaussian random numbers, and the transmitted signal
is of Q-PSK. Fig.2 shows the BER performance under dif-
ferent SNR. It can be observed that the optimal code de-
signed from our algorithm is superior in performance to
both V-BLAST and the Orthogonal code in [4].

5. CONCLUSION

In this paper, we present a new approach in designing or-
thogonal linear codes for a flat-fading MIMO system in
which an MMSE detector is employed. The overall coding
structure is obtained by maximizing the alternative SINR
and the specific structure for the individual coding matrices
is obtained by considering substream performance. It has
also been shown that this code structure achieves the lower
bound of the BER at high SNR.
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