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ABSTRACT

We develop a semi-deterministic semi-stochastic channel model
for the multiple-input multiple-output (MIMO) system under the
macrocell environment with local-to-mobile and local-to-base scat-
terers, and show that the channel capacity, multiplexing and diver-
sity gains are multipath limited in the sense that they are limited
by the number of multipaths around the base station. We derive
a lower bound on the ergodic capacity and an upper bound on the
average pairwise error detection probability. It is shown that the
base-station array affects the two different information theoretic
measures through the same metric, and the fading correlation ma-
trix also appears in the two bounds with the same form. Numerical
examples show the tightness of the two bounds.

1. INTRODUCTION

Multiple-input multiple-output (MIMO) systems use antenna ar-
rays on both the transmitter and receiver sides, and have been
one of the most active topics in communication research lately.
A MIMO system under rich scattering environment was shown
to provide much higher channel capacity compared with tradi-
tional single-input multiple-output (SIMO) systems [1], [2]. Many
space-time signal processing schemes have been proposed to ex-
plore the spatial multiplexing and diversity gains provided by MIMO
systems. Recently, more research work has been done to evaluate
the MIMO systems under more realistic scenarios. Spatial fading
correlation and its effect on the MIMO capacity are examined in
[3]-[5]. Environmental issues are considered in [6]. The degener-
ate channel case, or keyholes, is reported in [7]. Since the widely
used ideal i.i.d. Gaussian matrix channel model contains no ex-
plicit environmental parameters and physical propagation models
conversely require too much information of the environment, it is
necessary to find efficient, accurate and tractable MIMO channel
models for the realistic scenarios. A more general stochastic chan-
nel model is proposed in [8] and an intermediate virtual channel
representation is developed in [9]. Both of these two models have
symmetric structures that model the scattering on both the trans-
mitter and receiver sides in the same way.

In this paper, we consider a MIMO channel under a suburban
or rural macrocell environment, where there are typically few scat-
terers surrounding the base station and rich scattering around the
mobile station. In addition, the local-to-base scattering is much
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more stationary than the local-to-mobile one. This configuration
will finally induce a semi-deterministic semi-stochastic model.

Notation: We use bold upper letters to denote matrices; bold
lower letters denote vectors; (·)∗, (·)T , (·)† denote conjugate, trans-
pose, and Hermitian transpose respectively; E{·} represents ex-
pectation; tr{·} trace of a matrix; In denotes the identity matrix of
size n; ⊗ represents the Kronecker product; vec(·) stacks the first
to the last columns of the matrix one under another to form a long
vector; ‖ · ‖F represents the Frobenius norm of a matrix; exp(·),
log(·) stand for the exponential function and natural logarithm
function respectively; a circularly symmetric complex Gaussian
random variable z is a random variable z = x + jy, where x and
y are independent Gaussian random variable with equal variances;
χ2

n represents a Chi-square distributed random variable with n de-
grees of freedom.

2. CHANNEL MODEL

We consider the uplink channel of a wireless communication sys-
tem with b element antenna array at the base station, m elements
at the mobile station and L local-to-base scatterers. We treat the
local-to-base scatterers as receivers and transmitters which re-transmit
the received signals by multiplying the scattering coefficients and
neglect multiple scattering among them. Firstly, we model the
channel from the mobile station to the local-to-base scatterers.
Since the local-to-mobile scatterers are usually not far away from
the mobile station, we further assume that the multipath spread in-
duced by the local-to-mobile scatterers is small than the inverse of
the signal bandwidth B, then the channel experiences a frequency
flat fading. We also assume that the symbol period is much smaller
than the channel coherence time and apply the slow blocking fad-
ing for the analysis tractable purpose. Under the macrocell envi-
ronment, scatterers surrounding the mobile station are about the
same height as or are higher than the mobile, thus there is always
a rich scattering environment around the mobile station [10]. As-
sume that the mobile station antennas are separated large enough
that they fade independently. Then, the channel from the m mobile
station antennas to the L local-to-base scatterers can be written as
KT , where K = [h1, h2 · · ·hL] and hl = [h1,l, . . . , hm,l]

T ,
l = 1, 2, . . . , L. The channel undergoes a Rayleigh fading if there
is no dominant path in the local-to-mobile scattering or line-of-
sight between the local-to-base scatterers and the mobile antennas,
or a Ricean fading otherwise [10].

In this paper we will focus on the Raleigh fading case and as-
sume the elements in K are jointly circularly symmetric complex
Gaussian random variables with zero means and unit variances,
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and h1,l, . . . , hm,l are independent for any 1 ≤ l ≤ L. However,
hj,1, . . . , hj,L might be correlated, for any 1 ≤ j ≤ m, which
depends on the spacing between the local-to-base scatterers, dis-
tances from the local-to-base scatterers to the mobile station and
the assumption of the local-to-mobile scatterers distribution. Sev-
eral distributions can be considered, including uniform, Gaussian
and Laplacian [8]. Assume that the receive fading correlations be-
tween two local-to-base scatterers are the same for every mobile
antenna, the covariance matrix of KT has the Kronecker structure
as E{vec(KT )vec(KT )†} = Im ⊗ Σ and E{KT K∗} = mΣ.

Without the local-to-base scatterers, large antenna separations
are required to achieve the independent fading at the base-station
antennas under the macrocell environment, making the size of the
antenna array an issue. In this paper, instead of assuming large
separation among the base-station antennas, we consider closely-
spaced antennas, e.g., a uniform linear array (ULA) with half wave-
length spacing. Signals are transmitted from the mobile anten-
nas via local-to-mobile scatterers to the local-to-base scatterers,
and then scattered to the base-station array. Here, we assume
narrow-band plane waves impinging on the base-station antennas,
the channel from the local-to-base scatterers to the base-station ar-
ray is a line-of-sight deterministic channel, given by A = [α1a(θ1),
α2a(θ2) · · ·αLa(θL)], αl and θl are the scattering coefficient and
angle of arrival (AOA) of the l-th local-to-base scatterer respec-
tively, a(θl) = [a1(θl), a2(θl), . . . , ab(θl)]

T is the so-called
array response vector or steering vector [11]. Note that a(θl) is
a function of the array configuration, carrier frequency and AOA,
which affect the phase difference of the signals received at each
antenna with respect to the reference point.

The uplink MIMO channel model can then be written as

H = AKT . (2.1)

From (2.1) we can see that the channel model has an asymmetric
structure that the array configuration and environmental parame-
ters of the base station are included in the model explicitly but not
for the mobile station.

3. MAIN RESULTS

Based on the channel model (2.1), we can predict the performance
of the MIMO system under the macrocell environment. Since the
number of local-to-base scatterers is typically few, we assume L ≤
min{m, b} in the rest of this paper. The maximum multiplexing
gain and the achieving conditions are given as followed.

Theorem 1: The maximum multiplexing gain is L and, it is
achieved if and only if both A and K have a rank of L.
Proof: the only if part is obvious. The if part can be proved
straightforwardly as follows. Since A is of full-column rank, any
vector x satisfying Hx = AKT x = 0 also satisfies KT x = 0.
And because K is of full-column rank with probability 1, the rank
of the null space of KT is m−L with probability 1, thus the rank
of the null space of H is also m−L, which is equivalent to saying
that H is of rank L. Here, we refer to the rank as the complex
rank. �

We can see from the above that the number of available sub-
channels is limited by the number of multipaths around the base
station, the local-to-base scatterers help build the rank of the chan-
nel matrix. The full-column rank A requires that a(θ1), a(θ2) · · ·
a(θL), the array responses to the local-to-base scatterers, are lin-
early independent. And the full-column rank K with probability
one requires that h1, h2 · · ·hL not be fully correlated.

We assume that the transmitter has no channel state informa-
tion (CSI) and the receiver knows the channel perfectly. The aver-
age total input power at the transmitter side is P and the random
noise at each receiver antenna is independent additive circularly
symmetric complex Gaussian noise with zero-mean and variance
σ2. The “capacity” is referred to as “ergodic capacity” in this pa-
per.

Theorem 2: The capacity of the MIMO system (2.1) with rank
L is

C = E{log det(IL +
P

mσ2
A†AKT K∗)} (3.1)

and a lower bound is

Clb = Llog(
P

mσ2
)+log det(A†A)+log det(Σ)+

L∑
l=1

ψ(m − l + 1),

(3.2)
where ψ(x) is the digamma function [12].
Proof: See the Appendix.�

The lower bound (3.2) is tight for high signal-to-noise ratio
(SNR) and that the capacity increases by L nats/sec/Hz for ev-
ery 3 dB increase of the SNR. We say that the capacity is multi-
path limited in the sense that it grows linearly with L, instead of
min(b, m), when the SNR is large. The base-station antenna array
affects the lower bound (3.2) through det(A†A) and the fading
correlation by det(Σ).

Besides the channel capacity, the error exponent is another im-
portant information-theoretic measure, since it sets ultimate bounds
on the performance of communications systems employing codes
of finite memory. Suppose that X (i) is the transmitted m × N
codeword, where N is the block length and N ≥ m. We assume
that the code book is constructed satisfying the rank criterion for
Rayleigh space-time codes [14], i.e., X (i) − X (j) is full rank for
any pair of codewords in the code book. Suppose a maximum-
likelihood (ML) rule is employed to detect each codeword. Then
the Chernoff bound and an upper bound of the average pairwise er-
ror probability of deciding on the codeword X (j) instead of X (i),
where j �= i, is given as follows.

Theorem 3: The pairwise error probability (PEP) averaged
over channel realizations of the MIMO system (2.1) with rank L
is bounded as

Pe < det−1(ImL +
1

4σ2
[(X (i) − X (j))∗(X (i) − X (j))T ] ⊗

[A†AΣ]) (3.3)

< (4σ2)mLdet−L((X (i) − X (j))∗(X (i) − X (j))T )

det−m(A†A)det−m(Σ). (3.4)

Proof: See the Appendix.�
The upper bound (3.4) approaches the Chernoff upper bound

(3.3) when the SNR is large and it provides more insights into the
relationship between the system parameters and the error proba-
bility. From (3.4) we can see that the upper bound of the average
pairwise error probability is a function of (σ2)mL, thus the system
has a diversity gain of mL. So the diversity gain is also multipath
limited in the sense that it is linear to the number of multipaths
around the base station.

From (3.2) and (3.4), we find that the base-station array con-
figuration affects both the lower bound of the channel capacity
and the upper bound of the average pairwise error probability by
det(A†A). Therefore, maximizing det(A†A) when designing the
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base-station array, the two different information theoretic mea-
sures are optimized simultaneously. The same is also true for the
fading correlation matrix Σ, which affects the two bounds through
det(Σ).

Recalling the MIMO channel (2.1), it can be interpreted as
two cascaded MIMO systems: KT represents the first L × m
MIMO system from the mobile station to the local-to-base scatter-
ers, which is stochastic with independent columns and correlated
rows, and A represents the second b × L MIMO system from the
local-to-base scatterers to the base-station antennas, which is a de-
terministic “line-of-sight” model. The local-to-base scatterers not
only help the system build rank of the channel matrix, but also in-
crease the effective aperture of the base-station array; they obtain
the spatial diversity, which is further explored by the base-station
antenna array as the angle diversity. It is the local-to-base scat-
terers that help the system achieve the diversity without requiring
large physical size of the base-station array.

4. NUMERICAL EXAMPLES

In this section, we provide simulation examples demonstrating our
analytical results. We adopt Lee’s model [10] to calculate the fad-
ing correlation matrix Σ. Assume the coordinates origin is at the
reference point of the base-station array and the mobile station is at
(3000, 0) with units of wavelengths, which is about 1.125 kilome-
ters from the base station for the 800MHz carrier frequency. Ten
local-to-mobile scatterers are uniformly distributed on the circle
with radius 150 wavelengths. Half-wavelength spaced ULA with
4 elements is deployed at the base station and is orientated to the
x-axis with the angle of π/6. The coordinates of the two local-
to-base scatterers are (141, 141), (130, -75) respectively. In the
first example, we illustrate the channel capacity (3.1) and its lower
bound (3.2). From Figure 1, we can see that the lower bound be-
comes tight when SNR is large. Here, the capacity is evaluated by
Nats per second per Hertz.

Fig. 1. Channel capacity and its lower bound.

In the second example, we show the average pairwise error
detection probability and its Chernoff and upper bounds. From
Figure 2, we can see that the upper bound approaches the Chernoff
bound when SNR becomes large.

Fig. 2. Pairwise error probability and its Chernoff and upper
bounds.

5. CONCLUSIONS

We developed a channel model of MIMO system under the macro-
cell environment with local-to-mobile and local-to-base scatterers.
Our analysis of the capacity and pairwise error probability showed
that the multiplexing gain, capacity, and diversity gain are lim-
ited by the number of multipaths around the base station. The
base-station antenna array affects both the lower bound of the ca-
pacity and the upper bound of the error detection probability by
det(A†A) and the fading correlation through det(Σ). Future work
will include evaluating the outage capacity, developing methods to
improve the macrocell MIMO system performance and consider-
ing the scenario with remote scattering.

6. APPENDIX

In the appendix, we give the proofs of the Theorem 2 and 3.
Proof of Theorem 2:

C = E{log det(Ib +
P

mσ2
HH†)}

= E{log det(Ib +
P

mσ2
AKT K∗A†)}

= E{log det(IL +
P

mσ2
A†AKT K∗)}

> E{log det(
P

mσ2
A†AKT K∗)}

= Llog(
P

mσ2
) + log det(A†A) + E{log det(KT K∗)}

= Llog(
P

mσ2
) + log det(A†A) + log det(Σ) +

L∑
l=1

ψ(m − l + 1),

where the third equality follows from the determinant identity det(Im+
AB) = det(In + BA), where A and B are m × n and n × m
matrices respectively, and the last equality is inferred from the fact
that 2mdet(KT K∗)/det(Σ) is distributed as is the product of L
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independent χ2 random variables with 2m, 2(m− 1), . . . , 2(m−
L + 1) degrees of freedom respectively [13] and E{log χ2

2n} =
log 2 + ψ(n) [12]. �

Proof of Theorem 3:

Pe = E{Q(

√
‖H(X (i) − X (j))‖2

F
2σ2

)}

≤ E{exp(−‖H(X (i) − X (j))‖2
F

4σ2
)}

= E{exp(−‖[(X (i) − X (j))T ⊗ Ib]vec(H)‖2
F

4σ2
)}

= E{exp(−‖[(X (i) − X (j))T ⊗ Ib][Im ⊗ A]vec(KT )‖2
F

4σ2
)}

= E{exp(−‖[(X (i) − X (j))T ⊗ A]vec(KT )‖2
F

4σ2
)}

= det−1(IbN +
1

4σ2
[(X (i) − X (j))T ⊗ A][Im ⊗ Σ]

[(X (i) − X (j))T ⊗ A]†)

= det−1(IbN +
1

4σ2
[(X (i) − X (j))T (X (i) − X (j))∗] ⊗

[AΣA†])

= det−1(ImL +
1

4σ2
[(X (i) − X (j))∗(X (i) − X (j))T ] ⊗

[A†AΣ])

< (4σ2)mLdet−L((X (i) − X (j))∗(X (i) − X (j))T )

det−m(A†A)det−m(Σ),

where the fifth identity can be derived following similar proce-
dures at [15] and the seventh equality comes from the Lemma 1,
which is a generalization of matrix determinant identity det(Im +
AB) = det(In + BA). �

Lemma 1:

det(Imr + AB ⊗ CD)

= det(Imr + CD ⊗ AB)

= det(Inr + BA ⊗ CD)

= det(Ims + AB ⊗ DC),

where A, B, C and D are m×n, n×m, r×s and s×r matrices
respectively.
Proof: Suppose λ1, λ2, . . . , λm are the eigenvalues of AB in-
cluding repeated and zero eigenvalues, and µ1, µ2, . . . , µr are eigen-
values of CD. Then λiµj , i = 1, 2, . . . , m, j = 1, 2, . . . r are
eigenvalues of AB⊗CD [16]. The first equality follows directly
from the following identity.

det(Imr + AB ⊗ CD) =

m∏
i=1

r∏
j=1

(1 + λiµj).

The second and third equalities follows from above identity and
the fact that AB and CD have the same nonzero eigenvalues as
BA and DC respectively. �
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