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ABSTRACT

In this paper, we use the replica method originally devel-

oped in statistical physics to investigate the asymptotic sum-

rate of a Gaussian antenna-array-based multiple-input multiple-

output (MIMO) multiple-access wireless channel having spa-

tial correlations at both the transmitters and the receiver.

The asymptotic solution is not only rigorously valid for sys-

tems with large array sizes, but it also produces highly accu-

rate ergodic results for systems with only a few antenna ele-

ments at each transmitter and receiver. Furthermore, with

the asymptotic solution, we provide an efficient iterative

water-filling algorithm to determine the optimum transmit

signal covariance matrices when only the slow-varying chan-

nel spatial covariance information is available.

1. INTRODUCTION

Recent research results from the perspective of informa-

tion theory have shown excellent spectral efficiency in wire-

less systems with multiple-input-multiple-output (MIMO)

channels using antenna arrays [1]. Great progress has been

made in recent years toward understanding the information-

theoretical capacity of a point-to-point wireless system with

a MIMO channel [1]-[4]. Such point-to-point MIMO sys-

tems can employ orthogonal multiple-access protocols, such

as the TDMA or the FDMA, to serve each individual user

independently in a multi-user network. Not until recently

is the use of multiple antennas considered a possible choice

for designing multi-access protocols to simultaneously serve

multiple cochannel users with a high sum-rate (total rate of

all users) [5].

With perfect channel state information, an efficient tech-

nique for finding the capacity-achieving transmit signal co-

variance matrices for multiple users, called iterative water-

filling (IW), is developed by Yu, et al. [6]. Still little is

known about the sum-rate of the MIMO multiple-access

channel (MAC) with only the knowledge of the channel co-

variance information (CCI) [5], [7]-[10].

Following the pioneering work on CDMA systems in

[11],1 we present a framework to analyze the spectral ef-

ficiency of a MIMO-MA system with spatially-correlated

channels and with only the knowledge of the CCI. Applica-

tion of the replica method, a tool developed for macroscopic

statistical physics, allows us to derive an asymptotic sum-

rate when both the transmit and the receive channel spatial

correlations exist. It is shown through numerical simula-

tions that these results are not only rigorously valid for sys-

tems with large array sizes, but they also produce highly ac-

curate ergodic results even for systems with only a few an-

tenna elements at each transmitter and the receiver. With the

asymptotic results, we develop an iterative algorithm to find

the capacity-achieving transmit signal covariance matrix for

each user. It is shown that when only the CCI is available,

the joint optimization of signaling power and signaling di-

rections for each user can be carried out with a traditional

single-user water-filling algorithm.

Notations: For any general matrix A, A∗ denotes the

conjugate transpose of A, Tr(A) denotes the trace of A,

and λA,i denotes the ith eigenvalue of A. In addition, I de-

notes the identity matrix, 0 denotes the zero matrix, ‖ · ‖2

denotes the Euclidean norm, and E{·} represents the expec-

tation operator.

2. CHANNEL MODEL

We consider a MIMO-MA system, as shown in Fig. 1, with

N receive antennas and K users respectively with M1, · · · , MK

transmit antennas. The channel response of the kth user

from its transmit antenna m to the receive antenna n, de-

noted by h
(k)
n,m, can be assembled to form a channel matrix

Hk of size N × Mk. Let sk ∈ CMk×1 be the transmit

signal of user k, let x ∈ CN×1 be the receive signal, and

let u ∈ CN×1 be a noise vector with its covariance matrix

being σ2I. The receive signal can then be represented as

x =
K∑

k=1

1√
Mk

Hksk + u = Hs + u, (1)

1Subsequently, this work is generalized by Guo and Verdú [12].

IV - 6890-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡



SP = Spatial Precoder

SP
#1

SP
#K

s1

sK

M1

MK

H1

HK

1

1

Joint
Decoder

N

K

1

In
pu

t D
at

a
In

pu
t D

at
a

x

Fig. 1. Block diagrams of a MIMO MAC system.

where H = [ 1√
M1

H1
1√
M2

H2 · · · 1√
MK

HK ] and

s = [sT
1 sT

2 · · · sT
K ]T . The covariance matrices of the trans-

mit signal are defined as

E{sks∗k′} =
{

Ωk, k = k′

0, k �= k′ (2)

with the total transmit power of the kth user limited to Pk,

i.e., Tr(Ωk) ≤ Pk. Obviously, if the transmitters are al-

lowed to cooperate, the MIMO-MA system reduces to a

single-user MIMO system with a channel matrix of size

N × M , where M =
∑K

k=1 Mk. In a spatially correlated

wireless channel, the MIMO channel matrix for the kth user

can be written as [3]

Hk = R
1
2
k WkT

1
2
k , (3)

where Rk and Tk are, respectively, the N ×N receive spa-

tial correlation matrix and Mk ×Mk transmit spatial corre-

lation matrix of the kth user, and Wk is an N × Mk i.i.d.

(independent identically distributed) complex matrix.

The design of the transmit signaling schemes based on

the long-term channel covariance matrices is more practi-

cal. Therefore, we consider the maximization of the ergodic

sum-rate [5]:

max
{Ωk}

EW

{
log det

(
I +

K∑
k=1

HkΩkH∗
k

)∣∣∣∣∣R, T

}
;

s.t.
{

Tr(Ωk) ≤ Pk, k = 1, . . . , K
Ωk � 0, k = 1, . . . , K,

where W ≡ {W1, · · · ,WK}, T ≡ {T1, · · · ,TK} and

R ≡ {R1, · · · ,RK}. To simplify the sum-rate deriva-

tion, we focus only on large-system regimes, where both

Mk and N tend to infinity; but Mk

N , known as the system

load of each user, is fixed at a positive number ρk. We de-

fine ρ =
∑K

k=1 ρk as the total system load and µk = Mk

M
as the percentage system load of the kth user. With this,

we apply the replica method to derive a closed-form asymp-

totic solution for EW{log det(I+
∑K

k=1 HkΩkH∗
k)|R,T}.

Based on the asymptotic solution, we then develop an effi-

cient algorithm to determine the optimum transmit signal

covariance matrix for each user to maximize the sum-rate.

3. SUM-RATE

If the input signal statistics is fixed, the sum-rate of the

MIMO-MA system is equal to the joint mutual information

of the MIMO-MA system conditioned on the channel ma-

trix H

IMA(s;x|H) = Es,x

{
log

p(x|s,H)
p(x|H)

∣∣∣∣H
}

, (4)

where the expectation is taken over the joint conditional dis-

tribution p(s,x|H). Note that p(x|s,H) denotes the condi-

tional probability density function (pdf) of x conditioned on

s and H. Similar notation will be used throughout this pa-

per. In (4), p(x|H) is the marginal distribution of p(x, s|H) =
p(x|s,H)p(s). From (1), the characteristics of the Gaussian

MIMO-MA system can be described as

p(x|s,H) =
exp

[
− 1

2σ2 ‖x −Hs‖2
2

]
(2πσ2)−N

. (5)

Noticing that (5) is a Gaussian probability density function,

we have

Es,x{log p(x|s,H)|H} = −N log(2πσ2e). (6)

Define

Z(x,H, σ) = Es

{
exp

[
− 1

σ2
‖x −Hs‖2

2

]∣∣∣∣H
}

.(7)

Therefore, by using (4), (6), and (7) the sum-rate of the

MIMO-MA system can be written as

IMA(s;x|H)

= −M · Ex

{
1
M

log Z(x,H, σ)
∣∣∣∣H

}
− N, (8)

which is closely related to Z(X,H, σ). Note that, if p(s) is

Gaussian, the sum-rate of the MIMO-MA system (8) is thus

log det(I +
∑K

k=1 HkΩkH∗
k).

In the statistic mechanics, the free energy is defined as

1
M

log Z(x,H, σ̃), (9)

which includes all the statistics of the observables in the

system [11]. A standard trick used in statistical mechan-

ics in order to compute the asymptotic free energy is the

replica method. In the remaining part, we present some

results without proof. Readers interested in details are re-

ferred to [14]. After the asymptotic free energy is derived,

we then have the following proposition:
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Proposition 1 [14] The mutual information of a MIMO MAC
with Gaussian distributed inputs is given by

IMA =
1
N

K∑
k=1

log det(I + εkTkΩk)

+
1
N

log det

(
I +

K∑
k=1

1 − ak

σ2
0

Rk

)

−
K∑

k=1

ρkεk(1 − ak), (10)

where εk and ak satisfy the saddle-point equations

εk =
1

Mk
Tr

⎧⎨
⎩

[
σ2

0I +
K∑

l=1

(1 − al)Rl

]−1

Rk

⎫⎬
⎭ ,

1 − ak =
1

Mk
Tr

{
[I + εkTkΩk]−1TkΩk

}
. (11)

It should be noted that we have represented IMA in Propo-
sition 1 in a quantized format of as if the number of the input

and the output arrays are finite.

4. SUM-RATE MAXIMIZATION

Through numerical simulations in Section 5, we observe

that the asymptotic mutual information of the MIMO MAC

is extremely close to its ergodic sum-rate, even for systems

with as few as two or three antennas at each transmitter and

receive. This observation offers the asymptotic solution of

IMA a practical value on developing an efficient algorithm

to identify the optimal signal covariance matrix for each

user.

With no knowledge of the CSI, the optimal signal co-

variance matrix {Ωk} in a MIMO MAC to maximize IMA

are identity matrices [13]. On the other hand, when only

the slow-varying CCI is available, the optimal Ωk that max-

imize IMA is the water-filling solution to an equivalent sys-

tem with εkTk being its stand-along MIMO channel.

Proposition 2 [14] When only the CCI is known, the signal
transmission strategy for the kth user that maximizes IMA is
the water-filling solution to an equivalent system with εkTk

being its stand-alone MIMO channel, where {εk} are a set
of positive roots of joint equations of (11).

Obviously, the interaction among users is through {εk}.

The signal covariance matrix of each user is not affected

by the channel structures of the other users. The transmit

channel structure of the kth user, Tk, affects only the eigen-

value distribution of its own Ωk. Since all the signal covari-

ance matrices {Ωk} are involved in (11) in solving for εk,

we might expect that the optimal covariance matrices to be

found with an iterative algorithm.

Table 1. Comparison of the mutual information between the

analytic result (10) and the corresponding simulation results

for N = 2, M1 = M2 = M3 = M4 = 2 and for different

SNRs.

SNR(dB) 2 10 18
Analytical (bps/Hz) 5.17 9.91 16.43
Empirical (bps/Hz) 5.20 9.97 16.50
Difference (bps/Hz) 0.64% 0.64% 0.43%

Algorithm 1 CCI-based iterative water-filling (IW) algo-
rithm for a joint-decoding MIMO MAC system:

1. Initialize εk = 1
σ2
0

, k = 1, · · · , K .

2. Ωk = argmaxTr{Ωk}≤Pk
log det(1 + εkTk Ωk),

k = 1, · · · , K .

3. Solve {εk} according to the joint equations of (11)
with the new {Ωk}.

4. Go to step 2.

Such an iterative min-max procedure is not guaranteed to

converge even when a problem has a concave-convex struc-

ture. But the iterative procedure appears to work well in

practice for this particular problem. In fact, the proposed

algorithm provides a viable approach to maximize the sum-

rate in a practical wireless MIMO MAC system. Not that,

for the kth user, the associated transmit channel spatial cor-

relation matrix Tk can be estimated through the receiver of

the kth user’s downlink communication channel. A base

station only need to deal with Step 3 of the proposed algo-

rithm and then send the kth user his corresponding εk. After

the kth user receive εk, Step 2 of the proposed algorithm is

the only required process for the kth user. With the same

procedures, Step 2 and Step 3 are repeated.

5. EXPERIMENTS

For all the experiments, we assume the spatial correlation is

generated from an uniform linear array with half wavelength

spacing in a wireless environment where there is one prop-

agation path cluster with Gaussian power azimuthal distri-

bution having mean angle of θk and angle spread of δk. In

the remaining part of this section, θk and δk each with sub-

scripts T and R, respectively, refer to the concerned values

at the transmit side and at the receive side.

Experiment 1: Accuracy of (10)
Table 1 compares the mutual information between ana-

lytical results according to (10) and the corresponding sim-

ulation results obtained from 10,000 realizations of {Hk}.
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Without loss of generality, we assume Ωk = I in this ex-

periment. It is obvious that, regardless of the SNR, (10)

produces highly accurate results even for systems with only

a few antenna elements at each transmitter and receiver.

Experiment 2: Channel structure effects on the sum-
rate

An intuitive question is whether the spatial channel struc-

tures, either at the transmit side or at the receive side, affect

the sum-rate. To investigate the influence of the channel

correlation matrices, we focus on a two-user scenario.
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Fig. 2. Effects of the receiver-side spatial channel structure

on the system sum-rate.

Fig. 2 depicts the sum-rates when θR,1 = 30◦ with θR,2

being a control parameter. The curves from top to bottom

are 1) the sum-rates of a joint-decoding MIMO MAC sys-

tem employing the IW algorithm with perfect CSI, 2) the

sum-rates of a joint-decoding MIMO MAC system employ-

ing the CCI-based IW algorithm with only the knowledge of

the CCI, 3) the sum-rates of an open-loop MIMO MAC sys-

tem with Ω1 = Ω2 = I, and 4) the sum-rates of a separate-

decoding MIMO MAC system employing the linear MMSE

spatial equalizer at the receiver and use the same use the

same signal covariance matrices as those in 2). Obviously,

there are always dips around θR,2 = 30◦ for all the curves

in Fig. 2 when the signals of the two users collide at the

receive side. Fig. 2 also depicts the ergodic capacity of a

single-user system, i.e., K = 1, by removing the first user

from the system. Numerical results show that, with only the

knowledge of T2, assuming R2 = I is enough to obtain

a near-optimal ergodic capacity. This phenomenon is quite

different from that in the MIMO MAC scenarios. We con-

clude these experiment results with the following property.

Property 1 In a MIMO MAC system, signal covariance ma-
trix optimization using the IW algorithm with full knowledge
of the CSI, performances only a little better than the CCI-
based IW algorithm. When only the CCI is available: 1) For
each individual user, knowledge of the transmit-side CCI is

enough to approach the maximum data-rate. 2) For a gen-
eral MIMO MAC system, on the other hand, knowledge of
the receive-side CCI is crucial for maximizing the sum-rate.
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