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ABSTRACT

We propose a Bit Interleaved Coded Modulation with Iterative De-
coding (BICM-ID) scheme for MIMO systems using systematic

linear codes with Low-Density Generator Matrix (LDGM). We

compare the performance of the proposed scheme with the (con-

strained input) channel capacity and show its ability to perform

close to the theoretical limit. The main advantage of the proposed
structure relies on its low encoding and decoding complexity.

1. INTRODUCTION

Multiple-Input Multiple-Output (MIMO) systems resulting from

the use of several antennas at both transmission and reception have

concentrated much attention in the last years [1]. Different signal-

ing techniques have been specifically proposed to suit the char-
acteristics of the MIMO channel. Most of them focus on allow-

ing very simple symbol detection at reception [2]. However, it is

necessary to incorporate an outer code in order to obtain a perfor-

mance as close as possible to the channel capacity. One way is to
jointly design the coding and the signaling schemes, in an analo-

gous way as in Trellis Coded Modulation (TCM) in single-antenna

systems. Space-time trellis codes [2] are an instance of such ap-

proach. The drawback of these schemes is that they are designed
by hand for each particular case and their decoding complexity is

exponential in the number of transmitting antennas.

In this paper we explore an alternative coding and signaling

method for MIMO channels that is based on Zehavi’s concept of
Bit-Interleaved Coded Modulation (BICM) [3]. BICM consists of

a channel code followed by a bit-interleaver and a symbol-mapper.

Contrarily to TCM, BICM schemes cannot be designed by opti-

mizing the coding/modulation system as a whole, since the code-
words resulting from the bit-interleaving process are very long.

On the other hand, the use of standard convolutional codes within

a BICM scheme showed a reasonable performance over fading

channels. Nevertheless, for the case of AWGN channels (where
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no diversity gain can be obtained from the interleaving process)
the performance of Zehavi’s scheme was worse than that of TCM.

This limitation of BICM can be overcome by using iterative

decoding techniques similar to those employed for Turbo codes
[4]. Since the bit-to-symbol mapping in BICM can be seen as a

rate-1, binary-input, complex output inner code, an iterative de-

coding process can be applied in BICM schemes by separately

computing the a posteriori probabilities of the coded symbols at
both the demapper and the channel decoder. For AWGN channels,

iterative decoding of BICM schemes with convolutional codes [5]

results in a performance loss with respect to Turbo-TCM systems,

although their lower decoding complexity and simpler structure
at transmission1 might make worthy this performance loss. For

Rayleigh fading channels, the performance of BICM-ID is very

close to that of Turbo-TCM systems.

The previous discussion indicates that the application of the

concept of BICM with iterative decoding to MIMO systems is an

attractive idea. This was first proposed using convolutional codes

in [6] under the term Space-Time BICM (STBICM). The main im-
pairment of BICM-ID for MIMO systems is the exponential com-

plexity in the number of transmitting antennas associated with the

demapping processs. This can be overcome by means of subopti-

mum, very powerful demapping methods such as that presented in
[7]. There, the authors showed the ability of a BICM-ID MIMO

system, using Turbo codes as channel codes, to perform very close

to the capacity limit for a wide range of signaling techniques and

number of transmit and receiving antennas.

In this paper we consider BICM-ID for MIMO systems using

a concatenation of two linear block codes with Low-Density Gen-
erator Matrix (LDGM codes) [8]. The idea of using LDGM codes

for bandwidth-efficient modulation was explored by Cheng and

McEliece in [9] but only for high-rate codes which do not present

error floors and therefore do not need the concatenation. In [10] we

proposed the use of LDGM codes for BICM over AWGN channels
in a general perspective, allowing lower code rates by eliminating

their associated error floors by means of the concatenated scheme.

Here we extend that BICM-ID scheme to MIMO systems. The

main advantange of LDGM with respect to Turbo codes (as those
used in [7]) is that they have much less encoding and decoding

complexity. The results presented here show that BICM-ID with

concatenated LDGM codes performs close to the theoretical limit.

1Note that coding is performed just by means of a standard code, opti-
mized for the binary case
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2. LDGM CODES IN MIMO SYSTEMS

We consider the case of systematic LDGM codes, which are lin-
ear codes with a sparse generator matrix, GK×N = [IK PK×L],
where N = K + L and PK×L is a sparse matrix. Given an input

codeword u = (u1, u2, ..., uK), the parity bits c = (c1, c2, ..., cL)
are obtained as c = uP. Notice that LDGM codes are particular
cases of standard Low-Density Parity Check (LDPC) codes, since

it is obvious that their parity check matrices are also sparse. As

indicated before, the advantage over standard LDPC codes is that

their encoding complexity is very low.

Decoding of LDGM codes is performed by representing them

graphically as a Bayesian Network, and applying the Pearl’s Belief
Propagation (BP) algorithm [11] over the resulting graph. Specif-

ically, each node in the graph represents a random variable which

describes either a systematic or a parity bit. The connections among

the nodes are specified by the generator matrix G. Since a connec-
tion is only possible between a systematic bit node and a parity bit

node, the graph is bipartite. We use the notation (L, X, K) LDGM

code to indicate that the number of parity and input bits is, respec-

tively, L and K, and the degree of the systematic bit nodes (the
number of parity bits that depend on a given systematic bit node)

is X.

2.1. Eliminating the error floor: concatenated LDGM codes

Except for the case of high code rates [9], LDGM codes present er-

ror floors when used as standard channel codes. However, these er-
ror floors can be substantially reduced (and practically eliminated)

by using very simple concatenated schemes [8]. The basic idea

is to use an additional, serially concatenated, outer code that will

allow to correct the few errors remaining after the decoding of the

inner code. Note that any kind of code could be used as outer code,
but in this paper we assume that it is another systematic LDGM

code. The rate of the outer code can be extremely high, since the

number of errors to be corrected is very low. The output of the

outer code (u1, ..., uK , co
1, ..., c

o
Lo

) is fed into the inner code, re-
sulting in the sequence to be mapped

(c1, c2, ..., cNo) = (u1, ..., uK , co
1, ..., c

o
Lo

, ci
1, ..., c

i
Li

)

We will denote as [(Lo, Xo, Ko), (Li, Xi, Ki)] the whole code

resulting from the concatenation of an outer (Lo, Xo, Ko) LDGM

code and an inner (Li, Xi, Ki) LDGM code.

In order to keep the overall rate fixed, we have to adjust the

rate between the inner and the outer code. We consider that no
puncturing is performed on the systematic bits, so we transmit

Ko systematic bits and Lo + Li parity bits. The overall rate is

given by Rc = Ko/(Ko + Lo + Li). We can build up the inner

code by means of slightly modifications in the number of system-

atic and parity bits of a simple (non-concatenated) LDGM code
which presents good properties of threshold and error floor. In

other words, if we know that a given (L, X, K) simple LDGM

code presents good performance, then we can use as inner code in

the concatenated scheme a (L − Lo, X, K + Lo) simple LDGM
code, where L0 is small, and an (Lo, Xo, Ko = K) simple LDGM

code as outer code.

2.2. Bit-to-symbol mapping

Given a block of No = Ko + Lo + Li bits at the output of the

coding stage, we consider that the assignment of bits to symbols

is performed pseudorandomly, by means of an interleaver. Let us

denote by (c′1, c
′
2, ..., c

′
No

) = π(c1, c2, ..., cNo) the coded bit se-

quence after the interleaving process. The mapping to the transmit-
ted symbol x(i) = [x1(i), x2(i), ..., xM (i)]T is then performed

according to a given mapping rule

x(i) = map(c′(i)) i = 1, 2, ..., No/(MMc)

where

c
′(i) = (c′MMc(i−1)+1, c

′
MMc(i−1)+2, ..., c

′
MMc(i−1)+MMc)

and M is the number of transmitting antennas and Mc denotes

the number of bits carried by each symbol for the employed mod-

ulation. For instance, Mc = 2, 3, 4 bits for QPSK, 8PSK and
16QAM, respectively. In particular, for each subblock of MMc

bits we can perform the mapping by assigning the first Mc bits to

the first transmitting antenna, the following Mc bits to the second,

and so on. Then, for each transmitting antenna we can use a usual
mapping, such as Gray, Set Partitioning or Semi-Set Partitioning.

U1 UL UL+1 UK

C1 CLo

C1

o o

i CLi
i

X1 XLo XLo+1 XL

Fig. 1. Bayesian network representing the concatenated coding
and modulation scheme. {Ui} represents the information bits,

{Co
i } the outer parity bits, {Ci

i} the inner parity bits and {Xi}
the symbols transmitted through the channel.

The received signals can be written as

y(i) = H(i)x(i) + η(i) i = 1, 2, ..., No/(MMc) (1)

where H(i) is the N × M matrix which models the channel.

We assume that each complex coefficient of the channel matrix

is circularly-invariant, Gaussian distributed (thus being its modu-

lus Rayleigh distributed) with unit variance. The channel coeffi-
cients are independent in both the spatial and the temporal dimen-

sions. The components of the noise vector η(i) are both spatial and

temporally uncorrelated, circularly-invariant, Gaussian distributed

with variance N0/2 per complex dimension.

As shown in Figure 1, the overall concatenated coding and
modulation scheme can be represented using a Bayesian network.

Each node represents a random variable and the connection be-

tween two nodes means that there is a statistical dependence be-

tween them. In our case, the dependences are deterministic, be-
cause they are either parity constraints or refer to the mapping be-

tween bits and symbols. Both cases are easily handled by defin-

ing the corresponding probability mass functions as indicator func-

tions.
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3. ITERATIVE DETECTION AND DECODING USING
PEARL’S BELIEF PROPAGATION ALGORITHM

In this section we describe how to apply the Pearl’s Belief Propa-

gation (BP) algorithm [11] over the graph representing the BICM
scheme with the concatenation of two LDGM codes. The goal of

the decoding process is to compute the so-called belief for each

information bit node, denoted by BEL(ui). If the Bayesian net-

work had no cycles2, BEL(ui) would equal P [ui|e], the a pos-
teriori probability of the bit node Ui being equal to ui given the

available evidence (i.e., the observations and the probabilistic con-

straints contained in the Bayesian network). Once BEL(ui) is

computed, a decision is made according to the usual rule

ûi =

{
0 if BEL(ui = 0) > BEL(ui = 1)
1 if BEL(ui = 0) ≤ BEL(ui = 1).

(2)

In general, for a given node U , the belief of U = u is com-
puted by

BEL(u)
α
= λ(u)π(u), (3)

where
α
= stands for equality except for a multiplicative constant

and λ(u) = P [e−
U |u] and π(u) = P [u|e+

U ] are, respectively, the

likelihood of U = u given the evidence contained in the tree be-

low the node U , and the a posteriori probability of U = u given

the evidence contained in the network above U . We will denote
by Yi, i = 1, ..., m, and Wj , j = 1, ..., n, the children and the

parent nodes of the node U , respectively. Given the messages re-

ceived from its children, λYi
(u), i = 1, ..., m, and from its par-

ents, πU (wi), j = 1, ..., n, λ(u) and π(u) can be computed as

λ(u) =

m∏
i=1

λYi
(u) (4)

π(u) =
∑
w

P [u|w]

n∏
j=1

πU (wj), (5)

where w = (w1, ..., wn) denote the values taken by the parents of
U .

Node U delivers messages to both its children and parents.

The message λU (wj) = P [eU\e
Wj

U |wj ] delivered by the node

U to its parent Wj is the likelihood of Wj = wj given all the
evidence observed in the node U except that coming from Wj ,

and is computed as

λU (wj)
α
=

∑
u

λ(u)
∑
w\wj

P [u|w]
∏
k �=j

πU (wk), (6)

where w\wj denotes the vector w without its j-th component.

Similarly, the message delivered by U to its child Yi, πYi
(u) =

P [Yi|ui, eU\eYi

U ], is the a posteriori probability of Yi given Ui =
ui and all the evidence observed in the node U except that coming

from Yi, and is computed as

πYi
(u)

α
=

λ(u)

λYi
(u)

π(u). (7)

The particularization of the previous equations to the proposed

scheme can be found in [10]. In particular, the computation carried

2In our case, as it occurs with Turbo and LDPC coding schemes in gen-
eral, the network has cycles, but, as we will see in Section 4, the resulting
performance is still reasonable.

out in the symbol nodes is

BEL(Xi)
α
= λ(Xi)π(Xi), (8)

where λ(xi) = P [Yi|xi] ∝ exp(‖y(i) − H(i)x(i)‖2/N0) is the

likelihood of Xi = xi given the noisy observation from the MIMO
channel, and

π(Xi) =
∑

w:map(w)=xi

ns∏
j=1

πXi
(wj), (9)

where wj is the value taken by either a bit node, an outer parity
bit node or an inner parity bit node. The messages delivered by a

symbol node to its parents are

λXi
(wj)

α
=

∑
xi

λ(xi)
∑

w\wj :map(w)=xi

∏
k �=j

πXi
(wk). (10)

Different schedules for message updating can be utilized. How-

ever, we have corroborated that most of them achieve a similar
performance. The results presented in next section consider suc-

cessive updating of inner parity, outer parity and systematic bit

nodes.

4. SIMULATION RESULTS

Figure 2 shows the performance of the proposed BICM-ID scheme

for a two-transmit, two-receive antenna (2x2) MIMO system. We

consider a Rayleigh fading channel (see Eq. (1)) and perfect CSI at

reception. The code used is a [(500, 4, 15000), (14500, 6, 15500)]
concatenated LDGM code of rate 1/2, thus being the block length

No = 30000 bits, where Ko = 15000 bits are systematic and

Lo + Li = 500 + 14500 = 15000 bits are parity. A pseudoran-

dom interleaver with length equal to the block length is used be-
tween the output of the concatenated LDGM and the bit-to-symbol

mapping. For each subblock of MMc bits we assign the first Mc

bits to the first transmitting antenna, the following Mc bits to the

second, and so on. Then, for each transmitting antenna we can
use Gray labeling, which provides a sufficiently high “push” in the

first iteration3 to lead the LDGM decoder to the convergence re-

gion. At reception the MIMO channel is assumed to be known.

We perform one iteration over the symbol nodes (which form the

demapping module in our scheme) followed by ten iterations over
the rest of the graph, which represents the concatenated LDGM

code. The order in which the nodes of the concatenated LDGM

code are activated is: first, the inner parity bit nodes, then the outer

parity, and finally the systematic bit nodes. We allow a maximum
of ten iterations over the symbol nodes, stopping the algorithm

when the same decoded sequence is produced along three succes-

sive iterations. We also plot in Figure 2 the necessary Eb/N0 to

attain a (constrained input) channel capacity [7] in bit/s/Hz equal to
the information rate corresponding to the use of QPSK, 8PSK and

16QAM, i.e., 2,3 and 4 bit/s/Hz respectively. It is apparent from

Figure 2 that the proposed BICM-ID with concatenated LDGM

codes performs close to the capacity limit for the various modu-
lation techniques considered. The gap with respect to the capac-

ity limit is around 1.2, 1.6 dB and 1.9 dB for QPSK, 8PSK and

16QAM, respectively.

3This push can be measured in terms of the mutual information between
the a priori L-values about the coded bits and the a posteriori extrinsic L-
values at the output of the demapping module, as proposed by ten Brink
[12]

IV - 679

➡ ➡



1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0

B
E

R

Capacity QPSK Capacity 8PSK Capacity 16QAM

QPSK 8PSK 16QAM

Fig. 2. Bit Error Rate of BICM using LDGM codes over a 2x2
MIMO channel

We also study the effect on performance of increasing the

number of transmit and receiving antennas for a given modulation,

namely, QPSK. Figure 3 plots the BER vs Eb/N0 obtained using

QPSK for several MIMO configurations: 2 × 2, 3 × 3 and 4 × 4.
The rest of the parameters are the same as before. The difference

in performance is around 0.05 dB and does not allow to conclude

a performance loss when increasing the number of antennas. This

results in a throughput gain, since we can increase the number of
antennas, which increases the capacity of the MIMO channel al-

lowing us to use a higher rate, without an increase in the required

Eb/N0 for sucessful decoding at reception.

Note that the complexity of the demapping process (10) is ex-
ponential in both the number of transmitting antennas, M , and the

modulation order, Mc. As previously noted, a way to overcome

this impairment is to use suboptimum demapping schemes.

5. CONCLUSIONS
This paper presents a novel scheme suitable for MIMO channels

based on the use of Bit Interleaved Coded Modulation and codes

with low-density generator matrix. Under the assumption of fast
flat uncorrelated Rayleigh fading, the proposed approach performs

close to the capacity limit of the MIMO channel. The main advan-

tanges of the proposed approach are its very low encoding/decoding

complexity and that it does not require optimization of the code
parameters.

6. ACKNOWLEDGEMENT
The views and conclusions contained in this document are those

of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the Army Research

Laboratory or the U.S. Government.

7. REFERENCES
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