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ABSTRACT

Channel coding is an important building block in communi-
cation systems since it ensures the quality of service. Irreg-
ular repeat-accumulate (IRA) codes belong to the class of
Low-Density Parity-Ceck (LDPC) codes and even outper-
form the recently introduced Turbo-Codes of current com-
munication standards. The advantage of IRA codes over
LDPC codes is that they come with a linear-time encoding
complexity.

IRA codes can be represented by a Tanner graph with ar-
bitrary connections between nodes of given degrees. The
implementation complexity of an IRA decoders is domi-
nated by the randomness of these connections.

In this paper we present a scalable partly parallel IRA
decoder architecture. We present a joint graph-decoder de-
sign to parallalize IRA codes which can be efficiently pro-
cessed by this decoder without any RAM access conflicts.
We show design examples of these IRA codes which out-
perform the UMTS Turbo-Code by 0.2dB.

1. INTRODUCTION

Sophisticated channel coding schemes become increasingly
important in communication systems. Current communi-
cation standards already feature Turbo-Codes while for fu-
ture standards the decision whether to use Turbo- or Low-
Density Parity-Check (LDPC) Codes is still open.

LDPC codes were introduced by Gallager 1963 [2] and
were re-discovered in 1996 by MacKay and Neal [5]. The
so called irregular LDPC codes are approaching the Shan-
non limit really close and are thus the best known codes.
The major drawback of LDPC codes is the encoding com-
plexity which is an obstacle for hardware implementation.

Irregular repeat-accumulate (IRA) codes were introduced
in 2000 by Khandekar and McEliece [3]. These codes have
a linear-time encoding complexity with a straight forward
hardware realization, and outperform the actually deployed
Turbo-Codes. Like LDPC codes the IRA codes can be rep-
resented by a Tanner graph with arbitrary connections be-
tween the nodes of different degree. An IRA code is defined
by the degree distribution of the nodes.

IRA codes can be decoded by a combination of the
Sum-Product (SP) algorithm and the Maximum A Poste-
riori (MAP) algorithm. A serial decoder architecture comes
along with a limited throughput, a fully parallel architecture
is not feasible due the wire routing complexity. Therefore,
to achieve high throughput requirements a scalable partly
parallel decoder architecture becomes mandatory. Its com-
plexity strongly depends on the randomness of the Tanner
graph. Regularity in the Tanner graph will simplify the im-
plementation but can degrade the communications perfor-
mance. A completely random graph leads, in general, to
conflicts in storage element accesses. Therefore, we con-
strain the randomness of the graph such that no conflicts
occur for a given architecture. This leads to a joint graph-
decoder design methodology for IRA codes.

We present a partly parallel architectures which uses a
shuffling network and an elaborate addressing scheme to
provide the randomness of the graph. We show that IRA
codes constructed for such an architecture can outperform
Turbo-Codes by 0.2dB. Furthermore we apply an extrinsic
scaling factor (ESF) to reduce communication degradation.

The paper is structured as follows. IRA codes and the
decoding algorithm are explained in Section 2. In Section 3
the design of parallizable IRA codes is presented. The IRA
decoder architecture is explained in Section 4. Section 5
gives some results and Section 6 concludes the paper.

2. IRA CODES

An IRA code [3] can be represented by a Tanner graph (Fig-
ure 1), with N variable nodes (open circles) and M check
nodes (filled squares). The variable nodes can be partitioned
in K = N −M information nodes (IN) and M parity nodes
(PN). Each information node is connected to i check nodes
(CN). The fraction of information nodes connected to ex-
actly i check nodes is denoted fi, with ∑i fi = 1. The num-
ber of connections of a node is called degree. Each check
node is connected to a information nodes. These a∗M con-
nections between CN and IN are ’arbitrary permutations’
(Π). The check nodes are furthermore connected to parity
nodes in a fixed zigzag pattern.
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Fig. 1. Tanner graph for an IRA code, with IN (Information
Node), CN (Check Node), PN (Parity Node) and fi (fraction
of nodes with degree i)

For a fixed Π the Tanner graph of Figure 1 represents a
binary linear code. The code can be described by the degree
distribution f = ( f2, f3, . . . , fJ) and degree a.

Only systematic codes are treated here, with the code-
word (�u,�p) of length N = K+M. The information sequence
�u = (u0, . . . ,uK−1) is associated with the information nodes
(IN0, . . . , INK−1) and each parity bit �p = (p0, . . . , pM−1) is
associated with one of the parity nodes (PN0, . . . ,PNM−1).
The resulting code rate is R = a

a+∑i i fi
.

The encoder structure can be directly derived from the
Tanner graph. The information sequence is first passed
through a repetition unit (Figure 2). The repetition pattern
follows the given degree sequence fi. The highest degree
comes first, i.e. u0 is repeated J times, uK−1 two times. The
expanded information sequence is interleaved by Π. a val-
ues of the interleaved sequence are replaced by their binary
sum (modulo 2), which corresponds to a parity check. The
resulting sequence is passed through an accumulator, which
leads to the zigzag connections between PN and CN. The
accumulator corresponds to a RSC-encoder with memory
depth one, which yields a two state trellis. The information
bits and the parity bits after the accumulator are transmitted.
It is evident, that this encoding scheme has linear complex-
ity.

2.1. Decoding Algorithm

A combination of the Sum-Product (SP) algorithm [2] and
the Maximum A Posteriori (MAP) algorithm can be used
to decode IRA codes[1]. Decoding is an iterative process,
with a top down message flow according to Figure 1. One
iteration can be divided into several steps:

repetition
unit ∑aΠ 1

1+D
�u �p

fi Permu. CN accum.

Fig. 2. Encoder for an IRA code

• process the information nodes (repetition code)
• interleave the messages
• calculate the soft values of the parity checks
• MAP processing of the RSC encoder (accumulator)
• update the messages participating the parity checks
• deinterleave the messages

The decoding is finished if all parity check constraints are
fulfilled, or if a maximum number of iterations is reached.
All calculations are done in the logarithm domain and the
exchanged messages are assumed to be log-likelihood ratios
λ = log(p(0)/p(1)). Each information node of degree j
calculates an update of message k according to:

λk = λch +
j−1

∑
i=0,i�=k

λi. (1)

λch corresponds to the channel evidence of the IN (�u) and
λi represent the LLRs of the incident edges. The messages
are interleaved and passed to the check nodes. a messages
are involved in one parity check (see Figure 1). Each check
node calculates one ’a priori’ messages λap:

log(tanh(λap/2)) =
a−1

∑
i=0

log(tanh(λi/2)). (2)

This ’a priori’ information and the received parity sequence
(�p) is fed into a MAP decoder which processes the 2-state
trellis of the accumulator. Subtracting λap from the the
MAP decoder output, leads to a so called extrinsic infor-
mation λex. This extrinsic information together with the a
incoming messages of a check node updates the new a mes-
sages:

log(tanh(λk/2))= log(tanh(λext/2))+
a−1

∑
i=0,i�=k

log(tanh(λi/2)).

(3)
These messages are deinterleaved and passed back to the
information nodes which completes one iteration.

This decoding results in optimal decoding if the Tanner
graph is cycle free [6]. However, for limited block sizes the
Tanner graph will contain cycles. A message passed back
over a cycle to its origin will give no additional information
for this node. Therefore the number of iterations with a gain
in communications performance is limited. By selecting Π
for a given IRA code, the resulting graph should have cycles
as long as possible. Especially cycles of length ≤ 4 should
be avoided [6].

The MAP algorithm can be implemented in the logarithm
domain, by using the optimal Log-MAP algorithm or the
suboptimal Max-Log-MAP algorithm [7]. It is known that
the results of the Max-Log-MAP algorithm is too optimistic
leading to a lack of communications performance. For de-
coding IRA codes the degradation can be compensated by
using an extrinsic scaling factor (ESF=0.75). This factor is
multiplied on the extrinsic information λex prior the mes-
sage update (Equation 3).
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3. IRA CODES WITH CONFLICT FREE RAM
ACCESSES

A high-throughput IRA decoder requires a partly parallel ar-
chitecture. The level of parallization P is determined by the
number of messages passed concurrently through a permu-
tation network realizing the arbitrary connection Π of the
Tanner graph (Figure 1). Two problems come along with
the realization of the permutation network. For a high de-
gree of parallization the network is not feasible, due to the
wire routing complexity. When accepting arbitrary permu-
tations, concurrent accesses to the same memory can not be
avoided.

To tackle these problems we developed a joint graph -
decoder design method to construct an IRA code. For a
given permutation network we define the constraints for the
Tanner graph and then find an IRA code within these con-
straints with a good communications performance. Here,
we assume a simple shuffling network as permutation net-
work which can be implemented efficiently. This network
ensures that P input data are shuffled to P distinct target
memories. However, due to the regularity of this permu-
tation the resulting graph contains many cycles of length
≤ 4 and hence decreases the communications performance
of the code. Therefore an elaborated addressing scheme of
the target RAMs is applied to ensure a Tanner graph with cy-
cles of length ≥ 6. The shuffling and the addressing scheme
finally determines the interleaver Π for the encoding. This
design methodology for IRA codes is explained in detail in
[4].

4. IRA DECODER ARCHITECTURE

Figure 3 shows the architecture for an IRA decoder with
a parallization P = 4. It consists of 4 functional units for
IN and CNin/out , a shuffling network Π, a parallel MAP de-
coder and sufficient memory banks to save the messages.
The RAMs for the received channel values and the output
values are neglected here. The partly parallel decoder ar-
chitecture allows a wide range of the code parameters ( f ,a).
Only the amount of the highest degree fmax and amax is lim-
ited. For practical applications also the blocksize is limited
due to latency problems.

All functional units (IN,CNin/out) are simple arithmetic
units and can be pipelined easily due to the independence
of successive data. Hence, the processing units are not in
the critical path. Each functional unit has one input and one
output. To process an IN of degree j, 2 · j cycles are re-
quired to complete the computation of this node. The mes-
sages of a given node are read sequentially and have to be
located in the same memory at successive positions. There-
fore, the correct sequence for message retrieval must be pro-
vided during storage. By using the IRA code construction
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Fig. 3. Architecture of a partly parallel IRA decoder

of Section 3 the permutation can be done by a simple shuf-
fling network. The code construction also determines the
address for storage of each message. At each clock cycle
P = 4 messages are stored in the CN RAMs1-4 until all IN
nodes are processed.

Now the P = 4 CNin functional units can start to calculate
the a priori information (Equation 2) for the MAP decoder.
Always a successive data in a CN RAM determines one a
prior message.

The MAP decoder receives P = 4 messages per clock cy-
cle in parallel and produces as much output messages. Par-
allel processing within the MAP decoder is done exploiting
a sophisticated windowing technique [8]. The obtained ex-
trinsic information and the corresponding a messages are
fed to each CNout functional unit (Equation 3). These pro-
duce a new messages which are deinterleaved by the shuf-
fling network and stored in the IN RAMs 1-4. When all
messages are stored in the IN RAMs, the next decoding it-
eration can start.
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Fig. 4. Communications performance of IRA codes in com-
parison with Turbo-Codes, Rate=1/3, blocksize=5000, FER
(frame error rate) and SNR (signal to noise ratio)

5. PERFORMANCE RESULTS

To investigate communications performance IRA codes are
constructed, with code parameters f = ( f13 = 0.183, f12 =
0.051, f6 = 0.037, f5 = 0.3, f3 = 0.429) and a = 3, with a
resulting code rate of R = 1/3. The codes are optimized for
an architecture with a parallization of P = 10 and P = 20.

Figure 4 and Figure 5 show the communications perfor-
mance of IRA codes with information blocksize of 5000 bits
and 1000 bits respectively. Furthermore an UMTS compli-
ant Turbo-Code (TC) with the same code rate and block-
size is plotted. For the IRA codes a maximum number of
40 iterations and for the TC 10 iterations are carried out.
The performance gain by increasing the number of itera-
tions is negligible in both cases. For a blocksize of 5000
bits (Figure 4) the IRA codes outperform the Turbo-Code
by 0.2 dB at a FER of 10−3. For the IRA code design for
a parallization of P = 20 an error floor is visible. This is
due to the constraints to the code design, and the resulting
lower minimum code distance. Even for a smaller block-
size the performance of an IRA code (P = 10) is close to
the TC performance, see Figure 5. By scaling the extrinsic
values by ESF = 0.75, the decoding with the suboptimal
and less complex Max-Log MAP algorithm approximates
to that with the Log-MAP algorithm.

6. CONCLUSIONS

IRA codes are candidates for future communication sys-
tems. The complexity of an IRA decoder depends on the
randomness of the Tanner graph. We have presented a
scalable partly parallel decoder architecture which can ef-
ficiently process IRA codes which are constructed in re-
spect to the level of parallization. These IRA codes based
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Fig. 5. Communications performance of IRA code
(P=10) in comparison with Turbo-Codes, Rate=1/3, block-
size=1000

on a joint graph-decoder design can be processed without
RAM access conflicts and can even outperform the com-
monly deployed Turbo-Codes by 0.2dB. We show that the
communications performance with the Max-Log MAP al-
gorithm can be improved by using an extrinsic scaling factor
(ESF=0.75).
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