
EFFICIENT DSP IMPLEMENTATION OF AN LDPC DECODER

Gottfried Lechner, Jossy Sayir

Telecommunications Research
Center Vienna (ftw.)

A-1220 Vienna, Austria
{lechner,sayir}@ftw.at

Markus Rupp

TU Vienna, Institute for
Communication and RF Engineering

A-1040 Vienna, Austria
mrupp@nt.tuwien.ac.at

ABSTRACT

We present a high performance implementation of a
belief propagation decoder for decoding low-density
parity-check (LDPC) codes on a fixed point digital sig-
nal processor. A simplified decoding algorithm was
used and a stopping criteria for the iterative decoder
was implemented to reduce the average number of re-
quired iterations. This leads to an implementation with
increased throughput compared to other implementa-
tions of LDPC codes or Turbo codes. This decoder
is able to decode at 5.4Mbps on a Texas Instruments
TMS320C64xx DSP running at 600MHz.

1. INTRODUCTION

Low-density parity-check (LDPC) codes were intro-
duced by Gallager [1] in 1962. They allow transmission
at rates close to channel capacity while having a decod-
ing complexity which is linear in the block length. Due
to lack of powerful processors at the time of their in-
vention, they were mostly forgotten, then rediscovered
after the invention of Turbo codes [2].

In this paper, we present an implementation of an
LDPC decoder on a digital signal processor (DSP). The
DSP used is a Texas Instruments TMS320C64xx fixed
point processor. We present an efficient implementa-
tion utilizing the parallel units of this DSP. Further-
more, we compare the data throughput with existing
DSP implementations of Turbo codes.

The rest of this paper is organized as follows: in
Section 2, we describe LDPC codes, the decoding algo-
rithm and an approximation of this algorithm that is
suited for fixed point operations. The implementation
on the DSP is described in Section 3. In Section 4,
a stopping criterion is introduced and Section 5 shows
the computation requirements of the implementation.
In Section 6, simulation results are presented and com-
pared with an existing implementation of a Turbo de-
coder.

2. LDPC CODES

LDPC codes are block codes described by a parity-
check matrix. The term low-density originates from the
fact that the number of ones in the parity-check matrix
is small compared to the block length. Therefore, the
matrix is sparse, which leads to a decoding algorithm
with a computational complexity that is linear in the
block length [3].

This decoding algorithm works iteratively by pass-
ing messages on the edges of the associated factor
graph, which is a bipartite graph containing variable
nodes (representing the digits of the codeword) and
check nodes (representing the parity-check equations).
The messages are Log-Likelihood-Ratios (LLR), i.e.
the sign represents the binary digit (0 → +, 1 → −)
and the magnitude represents the reliability of the de-
cision.

This paper focuses on regular codes, i.e. every vari-
able node is connected to dv check nodes and every
check node is connected to dc variable nodes. A factor
graph of a code with dv = 3 and dc = 6 is shown in Fig-
ure 1. The connections between the variable nodes and
the check nodes are realized using an edge interleaver.

The operations at the variable and check nodes are
described in the next subsections following the notation
of [4]. Z

(i)
mn denotes a message sent from variable node

n to check node m at iteration i and L
(i)
mn denotes a

message sent from check node m to variable node n
at iteration i. The set of neighboring check nodes of
a variable node n is denoted as M(n) and the set of
neighboring variable nodes of a check node m is denoted
as N (m).

2.1. Variable Nodes

Each variable node receives one message L
(0)
n from the

channel and one message L
(i)
mn from every check node

it is connected to. In every iteration, the variable node
has to calculate an outgoing message Z

(i)
mn to every con-

IV - 6650-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡

interleaver
edge

nodes
ch

a
n
n
el

variable check
nodes

Fig. 1. Factor Graph of a LDPC Code.

nected check node according to

Z(i)
mn = L(0)

n +
∑

m′∈M(n)\m

L
(i)
m′n. (1)

After every iteration, the variable nodes have to
calculate an estimate of the a-posteriori LLRs

A(i)
n = L(0)

n +
∑

m′∈M(n)

L
(i)
m′n. (2)

These operations are already suited for implemen-
tation on a fixed point DSP and therefore, no simplifi-
cations are made.

2.2. Check Nodes

Every check node represents a single parity-check code.
The outgoing messages L

(i)
mn of a check node can be

computed as

L(i)
mn = 2 atanh

⎡
⎣ ∏

n′∈N (m)\n

tanh
Z

(i−1)
mn′

2

⎤
⎦ . (3)

This computation can not be implemented simply
on a fixed point DSP. Therefore, we use an approxima-
tion similar to the Max-Log-MAP algorithm

L(i)
mn ≈ min

n′∈N (m)\n
|Z(i−1)

mn′ | ·
∏

n′∈N (m)\n

sgn(Z(i−1)
mn′). (4)

To improve the performance, we also included a cor-
rection term as shown in [4] called offset belief propa-
gation based decoding

L(i)
mn ← sgn(L(i)

mn) · max(|L(i)
mn| − β, 0). (5)

Note that the correction term is constant and can
be implemented with low complexity. For our imple-
mentation we used the results from [4], where the value
of β is optimized when designing the code using density
evolution.

3. IMPLEMENTATION

We implemented a regular LDPC code with dv = 3,
dc = 6 (rate = 0.5) and a random edge interleaver in C
extended by intrinsic functions for the C64. All com-
putations in our implementation are performed with 16
bit quantization, a value large enough so that the loss
in performance due to quantization effects can be ne-
glected. The implementation of the three parts of the
decoder is described in the next sections.

3.1. Variable Nodes

The computation of the outgoing messages and the a-
posteriori LLRs of a variable node can be done effi-
ciently by computing first equation (2) and then sub-
tracting the incoming message from the sum for every
outgoing message

Z(i)
mn = A(i)

n − L(i)
mn. (6)

This leads to three additions and three subtractions
per variable node.

3.2. Check Nodes

For an outgoing message of a check node, the product
of the signs of all other incoming messages has to be
computed. This can be done by first computing the
product of the signs of all inputs and then multiplying
every outgoing message with the sign of the associated
incoming message.

The min operation of equation (4) can be efficiently
calculated by splitting it up in the following way, where
ai and bi represents the magnitude of an incoming and
outgoing message respectively.

x12 = min(a1, a2)
x34 = min(a3, a4)
x56 = min(a5, a6)

x1234 = min(x12, x34)
x1256 = min(x12, x56)
x3456 = min(x34, x56) (7)

IV - 666

➡ ➡

and calculating the outgoing messages as

b1 = min(a2, x3456)
b2 = min(a1, x3456)
b3 = min(a4, x1256)
b4 = min(a3, x1256)
b5 = min(a6, x1234)
b6 = min(a5, x1234) (8)

For every check node, we need six abs operations
and six comparisons for computing the magnitude and
sign of the incoming messages. Furthermore, we need
12 min operations, six additions and 24 logical opera-
tions for calculating the outgoing messages. All these
operations can be implemented without using branches
and many operations are independent from each other,
allowing the compiler to optimize the code and to uti-
lize the parallel computation units of this DSP.

3.3. Edge Interleaver

The interleaver is theoretically the easiest part of the
implementation. However, it requires random like
memory access operations which are very time con-
suming. We integrated the interleaver operations in
the check nodes because there, it is possible to access
the memory while computing the complex (in compar-
ison to the variable nodes) outgoing messages of the
check nodes.

All operations needed in our implementation (abs,
min, max, add, sub and comp) are available as intrinsic
functions that can interpret a 32 bit word as two 16 bit
words and perform two operations in one instruction.
To utilize this feature, we have to arrange the messages
in memory in a special way so that messages from odd
nodes are stored in the lower part and messages from
even nodes are stored in the higher part of a 32 bit
word.

This reordering of messages compared to Figure
1 can theoretically be done by placing an additional
interleaver between the edge interleaver and the vari-
able/check nodes. In practice, these two additional in-
terleavers are included in the edge interleaver.

With this arrangement, we are able to calculate two
variable nodes and two check nodes at the same time,
i.e. doubling the data throughput.

4. STOPPING CRITERION

An advantage of the LDPC decoder in comparison to
a Turbo decoder is that the decoder can easily detect
whether it reached a valid codeword. This is done by
verifying that every check node is fulfilled, i.e. the

Table 1. Computation Requirements of the LDPC
Decoder.

variable node check node correction
abs 6

min/max 12 6
logical 24

add/sub 6 6 6
comp 6
load 4 18
store 4 12

product of the signs of the incoming messages of a check
node is positive for all check nodes. Since we calculated
the product of the signs already we can use it to stop
iterating when the decoder reached a valid codeword.
Otherwise, we will continue iterating until a predefined
maximum number of iterations is reached.

An additional gain of this stopping criterion is that
the decoder is able to mark a block that has not been
decoded successfully. This can be used by higher layers.

The implementation of the stopping criterion leads
to a variable decoding time. An advantage of this prop-
erty is that the average number of iterations can be
used to estimate the Eb/N0 of the channel if this is
required.

5. IMPLEMENTATION REQUIREMENTS

The decoder was implemented in C and the number
of cycles required per iteration was simulated. In-
cluding the correction term and the stopping crite-
ria, we achieved a fixed computation time of 11.1 cy-
cles/iteration/bit. For a DSP running at a clock fre-
quency of 600MHz and an average number of 10 iter-
ations, this results in a data throughput of 5.4Mbps.
This implementation is approximately 2.6 times faster
than a comparable Turbo Decoder implemented on the
same type of DSP [5]. However, the Turbo decoder
needs fewer iterations to converge. This makes the
comparison between LDPC decoder and Turbo decoder
difficult.

The computation requirements of our implementa-
tion are summarized in Table 1. The values given in the
table do not account for the parallel computation of two
nodes described in Subsection 3.3. Furthermore, when
calculating the total number of operations for one iter-
ation, it must be considered that the number of check
nodes is half the number of variable nodes.

IV - 667

➡ ➡

6. SIMULATION RESULTS

We simulated the bit error rate of the implemented
regular LDPC decoder using a codeword length of
N = 10228 and compared the performance with a
Turbo decoder using an 8-state component encoder
and an even-odd interleaver described in [5] with the
same block length. The Turbo code was punctured by
transmitting the two parity sequences alternatively to
achieve the same rate as the LDPC code.

Figure 2 shows the bit error rate of both decoders
for a given maximum number of iterations using binary
phase shift keying and an additive white Gaussian noise
channel.

To compare the required computation time, we
show the number of cycles per bit in Figure 3. Due
to the stopping criterion, the average number of cycles
depends on Eb/N0 for our decoder while the compu-
tation time of the Turbo decoder is constant. For low
Eb/N0 the computation time for the LDPC decoder is
higher than for the Turbo decoder. For high Eb/N0 the
decoder is able to converge to the transmitted codeword
after a few iterations which leads to a computation time
that is lower than for a Turbo decoder.

7. CONCLUSION

In this paper, we showed how to implement a decoder
for LDPC codes using a fixed point DSP. By using a
correction term and an easy to implement stopping cri-
terion, we were able to achieve similar performance as
with a Turbo decoder. At high Eb/N0, our LDPC de-
coder requires less computation time than the Turbo
decoder. In addition, the LDPC decoder has the ad-
vantage that it is able to detect a unsuccessful decoding
operation and can pass this information to higher lay-
ers.

Our implementation can be extended to different
rates and to irregular LDPC codes. Irregular codes
have a lower bit error rate for a given Eb/N0 but usu-
ally require a higher number of iterations to converge.
Further work should be done to design irregular LDPC
codes with good convergence behavior and good per-
formance in terms of bit error rate.

8. REFERENCES

[1] R.G. Gallager, “Low density parity check codes,”
IRE Transactions on Information Theory, vol. IT-
8, pp. 21–28, Jan 1962.

[2] C. Berrou, A. Glavieux, and P. Thitimajshima,
“Near Shannon limit error-correcting coding and

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0

B
E

R

LDPC
Turbo 3 iterations
Turbo 4 iterations
Turbo 5 iterations

Fig. 2. Bit error rate.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

50

100

150

200

250

300

E
b
/N

0

cy
cl

es
/b

it

LDPC
Turbo 3 iterations
Turbo 4 iterations
Turbo 5 iterations

Fig. 3. Required cycles per bit.

decoding: Turbo-codes,” in Proc. 1993 IEEE Inter-
national Conference on Communications, Geneva,
Switzerland, 1993, pp. 1064–1070.

[3] D. J. C. MacKay, “Good error-correcting codes
based on very sparse matrices,” IEEE Transactions
on Information Theory, vol. 45, no. 2, pp. 399–431,
1999.

[4] Jinghu Chen and Marc P. C. Fossorier, “Density
evolution for two improved BP-based decoding al-
gorithms of LDPC codes,” IEEE Communications
Letters, vol. 6, no. 5, pp. 208–210, 2002.

[5] Yingtao Jiang, Yiyan Tang, Yuke Wang, and Dian
Zhou, “A DSP-based turbo codec for 3G communi-
cation systems,” in Proc. 2002 IEEE International
Conference on Acoustics, Speech, and Signal Pro-
cessing, 2002, pp. III–2685–III–2688.

IV - 668

➡ ➠

