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ABSTRACT

In this paper we propose a novel iterative source-channel decoding
approach for robust transmission of compressed still images over
noisy communication channels. Besides the explicit redundancy
introduced by channel encoding also implicit residual source re-
dundancy is exploited for error protection. The source redundancy
is modeled by a Markov random field (MRF) source model, which
considers the residual spatial correlation after source encoding.
The resulting MRF-based soft-input/soft-output source decoder is
used as outer constituent decoder in the proposed iterative source-
channel decoding scheme, where due to the link between MRFs
and the Gibbs distribution, the source decoder can be implemented
with very low complexity. We show that this iterative decoding
scheme can be successfully employed for recovering the image
data, especially when the channel is highly corrupted.

1. INTRODUCTION

Joint source-channel coding approaches for robust image trans-
mission have recently become a reasonable alternative for delay-
or complexity-constrained systems compared to the strictly sepa-
rate design of source and channel encoder. One subclass of those
approaches is characterized by a joint allocation of source and
channel coding rates in combination with a strong error protec-
tion scheme (e.g. [1,2]), which provides excellent results for mod-
erately distorted channels. However, especially for low channel
signal-to-noise ratios (SNRs) the performance highly depends on
the properties of the used channel codes. Another subclass is rep-
resented by joint source-channel decoding where residual source
redundancy is exploited for additional error protection at the de-
coder (e.g. [3, 4]). These methods have less encoding delay and
complexity, and for very low channel SNRs, they often yield sim-
ilar or better performance than the combination of strong source
and channel encoding [5].

In this paper, we address joint source-channel decoding and utilize
both the implicit residual index correlation after source-encoding
and the explicit redundancies from channel codes for protecting
the source data. As a new result the two-dimensional residual spa-
tial correlation of the source image is modeled via a Markov ran-
dom field (MRF) approach [6], which has the advantage that it is
not necessary to store a priori information describing the residual

source correlation at the decoder. This is in contrast to those ap-
proaches which model the image data as Gauss-Markov processes,
as for example the methods proposed in [4,7]. The proposed tech-
nique utilizes an iterative source-channel decoding scheme ana-
log to the decoding of serially concatenated channel codes [8],
where the outer constituent soft-input/soft-output (SISO) channel
decoder is replaced by the MRF-based SISO source decoder.

2. TRANSMISSION SYSTEM

The block diagram of the overall transmission system is depicted
in Fig. 1. The two-dimensional (2-D) subband image is scanned
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Fig. 1. Model of the transmission system

in order to obtain the one-dimensional (1-D) subband vector� � � � 
 � � � � � � � � � � � � �
consisting of � source values

� �
. Af-

ter subsequent (vector-) quantization, the resulting indices � � � !
are represented with " bits where

! � $ & � ( � � � � � + - . ( 0
. We

can generally assume that there are dependencies between the ele-
ments of the index vector 1 � � � 
 � � � � � � � � � � � � �

due to delay and
complexity constraints for the source encoder.

After interleaving and channel encoding with a rate- 3 systematic
channel code we obtain the code bit vector 4 � � 6 8 1 : � ; �

where
4 � � < 
 � < � � � � � � < � = � � �

with
< � � $ & � ( 0

, � A � � B " D 3 , and
;

referring to the redundancy bits. The code bit vector 4 is then
transmitted over a BPSK-modulated AWGN channel. The condi-
tional p.d.f. for the received soft bit E< G � I K

at the channel output
given the transmitted bit

< G
, L � & � ( � � � � � � A . (

, can be written
as

M 8 E< G N < G : � (
P + 6 Q S U

� VW X WY [ \A ^ � A _^ ` W � < aG � ( . + < G �
(1)

and
Q eS � � f

e g h denoting the channel noise variance. i k is
the energy to transmit each bit, and � 


corresponds to the one-
sided power spectral density of the noise. Using conditional log-
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likelihood ratios (L-values) we may express (1) also as

� � �� � � � � � 	 � � � 
 � �� � � � � 	  �

 � �� � � � � 	 � � � 	 	 � �

� � �� � 	 � � �� � �
(2)

The source-channel decoding step in Fig. 1 then provides an es-
timate of the input vector

�
in such a way that the SNR at the

decoder output is maximized.

3. MRF-BASED SISO SOURCE DECODING

In this section only the residual source redundancy after source en-
coding is exploited for error protection, i.e. no channel codes are
used. Thus, in the transmission system from Fig. 1 we therefore
have � 	 � . For this scenario we derive a SISO source decoder
based on a MRF source model which generates a posteriori prob-
abilities (APPs) for the source hypotheses � � 	 

.

To this end, let us consider the eight nearest neighbors for a given
subband source index � �

within a quantized subband image prior
to transmission. Such a neighborhood system is displayed in
Fig. 2(a), where all neighboring source indices are referenced rela-
tively to the index � � � � � �

under consideration, which for the sake of
brevity will also simply be written as � �

in all future discussions.
We denote the set of all source indices belonging to the neighbor-
hood of � �

as � � � 	 � � � � � � � � � � � 	  � �  � � $ � � �
in the follow-

ing. Since all indices in the neighborhood system of Fig. 2(a) show
spatial dependencies due to imperfect source encoding the index
probabilities  � � � 	  � ,

 % &
, may be modeled via a MRF

using the well-known Markov-Gibbs correspondence [6]. Using
this relation, the probability for an element � �

of the MRF given
all other source indices in a local neighborhood � � � can then be
stated as [6]

 � � � 	  � � � � � 	 �! )
* +" $ , & � ' ( � - �

(3)

where the function
. �  � � � � � is called energy function, the quan-

tity * is called temperature, and
!

denotes a normalization con-
stant. We can decompose

. �  � � � � � as a sum over so-called po-
tential functions + - �  � � � � � according to

. �  � � � � � 	 . - + - �  � � � � � �
(4)

The potential functions are defined for a given clique 0 , and the
sum in (4) is carried out over all or a subset of all possible cliques
in the local neighborhood. An example is depicted in Fig. 2(b)
for the eight-pixel neighborhood system in Fig. 2(a) where all as-
sociated cliques are shown. The first type of clique just consists
of single source indices, the second type of cliques describes the
index � �

and its horizontal neighbors, the third type addresses all
vertical neighbors of � �

and so on. In the following we restrict
ourselves only to two-element cliques and the potential functions

+ - �  � � � � � � � � 	 �   � � � � � � � 2
(5)

proposed in [9], where 3 is a free parameter.

In order to apply the MRF model to the source decoder we con-
sider a new set � 4� � 	 � 6� � � � � � � � � � 	  � �  � � $ � 6� �

where
6� � � � � �

now denotes an already decoded estimate of � � � � � �
, e.g. from a

maximum-likelihood (ML) decoding of the received soft-bits at
the channel output. The APPs for � � 	 

based on the local neigh-
borhood at the decoder can then be written as  � � � 	  � �� � � � 4� � � ,

Ik,1,1

Ik,0,0

Ik,−1,−1 Ik,0,−1 Ik,1,−1

Ik,1,0Ik,−1,0

Ik,−1,1 Ik,0,1

(b)(a)

Fig. 2. Eight-pixel neighborhood system with all ten correspond-
ing cliques

where the soft-bit vector �� � 	 3 �8 � � � � �8 4 � � � � � � � �8 5 * 4 � � 6
consists of

the individual soft-bits �8 : � � % 7 9
received at the output of the chan-

nel. By applying the Bayes theorem we obtain

 � � � 	  � �� � � � 4� � � 	 0 � : 
 � �� � � � � 	  � :  � � � 	  � � 4� � � (6)

with the normalization constant 0 �
. In (6) the term 
 � �� � � � � 	  �

denotes soft-information from the output of the AWGN channel
according to


 � �� � � � � 	  � 	 5 * 4=: ? � 
 � �8 : � � � 8 : � � � �
(7)

where the conditional p.d.f. 
 � �8 : � � � 8 : � � � for the @ -th bit 8 : � �
of the

index � �
is given in (1) when

� �
is replaced with 8 : � �

. The term � � � 	  � � 4� � � corresponds to the conditional probability from
(3) where the original source indices � � � � � �

, for the neighborhood
are replaced by the estimates

6� � � � � �
.

Like in classical Bayesian MRF-based image restoration [6] we
use an iterative decoding approach where (6) is applied multiple
times until convergence is achieved. The procedure is as follows:

1. Obtain initial estimates
6� , � -� for the received 1-D scanned sub-

band image indices by performing a ML decoding from the
received soft-bit sequence �� at the channel output. Set B D 

.

2. Apply (6) in order to determine the APPs � � � 	  � �� � � � 4� F H J� � .

3. Obtain a new estimate
6� , K M 4 -� via a maximum a posteriori

(MAP) estimation according to

6� , K M 4 -� 	
arg N P Q&  � � � 	  � �� � � � 4� F H J� � �

4. Set B D B S �
and go to step 2 as long as the estimates

6� , K -�
change between iterations.

The resulting APPs  � � � 	  � �� � � � 4� F H J� � at the output of the fi-

nal iteration may be interpreted as approximations of the APPs � � � 	  � �� � � � A� � � conditioned on all received soft-bit vectors
�� � � � � �

in the local neighborhood of �� �
.

The calculated APPs can then be used for a mean-squares (MS) es-
timation, which corresponds to an SNR maximization, according
to

�. � 	 C T * 4.& ? �
. � �  � :  � � � 	  � �� � � � A� � � �

(8)
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4. ITERATIVE SOURCE-CHANNEL DECODING

An error protection carried out by only using the residual spatial
source redundancy may not be enough in many transmission situ-
ations. Therefore, we assume that the output of the source encoder
is protected by a systematic channel code, as it is depicted in Fig. 1.
Note that this scheme is highly similar to a serially concatenated
channel code [8], which leads to the iterative decoding scheme de-
picted in Fig. 3. Herein, the outer constituent channel decoder is
replaced by the MRF-based source decoder presented in Section 3.
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Fig. 3. Iterative source-channel decoder

At the beginning of the first iteration, the SISO chan-
nel decoder issues APPs � � � �� � � � �� � for the information
bits � �� � �

of the bit-interleaved source index sequence
� � 
 � .

These APPs are used to calculate the corresponding condi-
tional L-values

� � �  � � �� � � � � � � �� �� � � 	 � � � � � � �� � � � 	 � � � 
extr

� � �� � � � for
� � � � � � � � � � �

,
� � � � � � � � � � �

. The term
� � �� �� � �

is defined

analog to (2) for the interleaved index bit � �� � �
.

� � � � � � �� � � � de-

notes the a priori information for the index bit � �� � �
, and

� � � 
extr

� � �� � � �
refers to the extrinsic information [10]. After subtraction of the
a priori term and after deinterleaving we obtain the L-values� � � 

e
� � � � � � � � � �� � � � 	 � � � 

extr
� � � � � � , which are used as a priori in-

formation
� � � � � � � � � � for the SISO source decoder. In the follow-

ing, we assume that all information bits are uncorrelated. Then, the
corresponding index-based probabilities for the a priori L-values� � � � � � � � � � can be obtained by bitwise multiplication of the prob-
abilities for the index bits � � � � � � � . By inserting this a priori
knowledge into (6) we obtain modified APPs according to

� � � � � � � � �� � � � �� � � � � �� � � � � � � � � � �� � � �
! " #�

� � $ % � �� � � � � � � � � � � � � � � � 
extr

� � � � � � � � � �� � (9)

where � ��
is a normalizing constant. The initial estimates

�� � $ �
for the iterative MRF-based source decoding procedure from Sec-
tion 3 can be directly obtained by using the L-values

� � �  � � � � � � .
After the iterations have been performed, the output of the
SISO source decoder yields the index-based modified APPs

� � � � � � � � �� � � � '� � � and the corresponding bit-based L-values� � �  � � � � � � , respectively. By subtracting the source a priori infor-
mation

� � � � � � � � � � from
� � �  � � � � � � we finally obtain the extrinsic

information
� � � 

extr
� � � � � � , which is used as a priori information for

subsequent channel decoding.

The convergence behavior of the MRF-based iterative source-
channel decoding scheme can be visualized with EXIT charts
[11], which show the input-output characteristics of the con-
stituent decoders in terms of mutual information � � � � � � between
L-values and the index sequence 
 . Given the mutual informa-
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Fig. 4. EXIT chart for the LL subband of the ”Goldhill” image
( ) 8 * � $ � � �

dB)

tions (cmp. Fig. 3)

� - 9 � � � � � � � . � � � 
 � � � � � 
 � � � � < 9 � � � � � � � � � � � 
 � � � � � 
 � � �

� - > � � � � � � � 
extr

� 
 � � 
 � � � < > � � � � � � � � � 
 � � 
 � �

the transfer characteristics � @ of the (inner) channel decoder and
� B of the (outer) MRF SISO decoder are defined as � - 9 �
� @ � � < 9 � ) 8 * � $ � and � - > � � B � � < > � , respectively. By plotting
both mappings � @ and � B into one diagram we obtain an EXIT
chart, where an example for the LL subband of the ”Goldhill” im-
age quantized with � � E

bits, a rate 1 � � * G recursive systematic
convolutional (RSC) code, and an ) 8 * � $ � � �

dB is depicted in
Fig. 4. The temperature parameters for the MRF SISO decoder
are chosen as � � �

, � � 3 � J
, and � � �

. We can see from
Fig. 4 that for � � 3 � J

we obtain the highest extrinsic output for
almost all values of � < > . Furthermore, it can be observed that for
an increasing mutual information � < > with � < > M � � N

the trans-
fer characteristic for the MRF SISO decoder actually leads to a
decreasing value of � - > . This is due to the fact that the MRF
model imposes statistical relations on the elements of a local im-
age pixel neighborhood (see (3)). If the channel decoder delivers
bits with high reliability, which corresponds to already good ini-
tial estimates

�� � $ � , the imposed statistical dependencies may not
hold true for every spatial position within a specific subband im-
age, leading to a quality degradation for the estimates

�� � � � , � M �
.

In order to illustrate the iterative decoding process Fig. 4 also dis-
plays snapshot decoding trajectories, where we can observe that
after four iterations convergence is obtained.

5. SIMULATION RESULTS

An experimental image transmission system is derived by apply-
ing the transmission model from Fig. 1 to every subband of an

�
-

level wavelet octave filter bank and using the results from above.
After optimal scalar quantization the resulting bitstream in each
subband is bit-interleaved using a random interleaver and channel
encoded with a terminated memory-4 recursive systematic convo-
lutional (RSC) code derived from a nonrecursive RCPC code [12].
Source- and channel coding rates are jointly allocated using the ap-
proach from [7]. We assume that sensitive side information, such
as the DC content, quantizer stepsizes, and rate allocations, are
protected by a sufficiently strong channel code, such that error-free
transmission is possible.

The experimental image transmission system is applied to theO � 3 Q O � 3
pixel ”Goldhill” test image for

� � R
and a target bit rate

of 1 T � � � R G bits per pixel (bpp) including channel coding and all
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side information. This approach is denoted with ”MRF JSCD” in
the simulations. The further MRF parameters are � � � � � , � � � � �

for the LL subband (cmp. Fig, 4), and � � �
for all other sub-

bands, respectively. Furthermore, we allow a maximum of four it-
erations in the MRF source decoder. We compare the performance
of the presented approach with the method from [7] (”2-D JSCD”)
which employs a similar iterative source-channel decoding setup,
but a different source model. In this model, horizontal and vertical
correlations are regarded as separate Markov sources, where the
transition probabilities corresponding to these Markov processes
are obtained from a large training set and are stored at the decoder.
Besides, plain MRF-based source decoding (”MRF SD”) without
additional protection by channel codes is considered. For all ap-
proaches, a mean-squares estimation is employed.

Fig. 5 shows the simulation results for the above-mentioned meth-
ods where the peak-SNR (PSNR) values of the reconstructed im-
ages versus the channel parameter � � 
 � 

averaged over 100 sim-
ulated transmissions are displayed. Especially for low channel
SNR the ”MRF JSCD” technique outperforms the ”2-D JSCD”
approach by approximately 1-2 dB in PSNR, where we have ob-
served similar gains also for other images. This performance gain
may be due to the fact that the MRF source decoding itself is per-
formed iteratively, such that the channel decoder can be provided
with more reliable L-values for the next iteration. For channels
with an � � 
 �  � �

dB both approaches have approximately the
same performance. In our simulations we observed that the ”MRF
JSCD” approach approximately has the same complexity as the the
”2-D JSCD” approach. However, the storage complexity is signifi-
cantly reduced for the proposed MRF-based JSCD approach since
there is no need to store source a priori information. An example
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Fig. 5. Results for the ”Goldhill” image ( � � � � � � � bpp,
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)

of the good reconstruction quality for a highly corrupted channel
is displayed in Fig. 6.

6. CONCLUSIONS

By using the implicit two-dimensional residual source redundancy
for error protection in conjunction with channel coding, an iter-
ative decoding scheme is derived in a similar way as for serially
concatenated channel codes: the difference is that a soft-input APP
source decoder replaces the outer constituent channel decoder. The
source signals are modeled using Markov random fields, and due
to the Markov-Gibbs correspondence, the computation of a priori
densities can be made very resource-efficient. We have shown that
this source-channel decoding technique can be used for robust im-
age transmission over highly distorted AWGN channels. The sim-
ulation results show that clear-channel quality is already achieved
for an � � 
 � 

of as little as 4 dB.

Fig. 6. Reconstructed image for � � 
 �  � � �
dB (bit error rate

10.4 %), PSNR
� � � � �

dB ( � � � � � � � bpp,
� � �

, MRF JSCD,
four iterations).
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