
01)(kkk QQuL

iukkk
N

iu
k

k

ConstssssRc 11 ,'')Pr(log

)Pr(logmax 1
;

N

iuc

i
k RcQ

k

TRACEBACK-ENHANCED MAP DECODING ALGORITHM

 Curt Schurgers Anantha Chandrakasan

 ECE Dept., UCSD MTL, Massachusetts Institute of Technology
 curts@ece.ucsd.edu anantha@mtl.mit.edu

ABSTRACT

Soft-input soft-output algorithms are the principal
component of the iterative decoding used in turbo codes
and other ‘turbo’ feedback schemes. To enable efficient
implementation, especially on energy constrained
platforms such as portable devices, it is crucial to reduce
the computational complexity to a minimum. We propose
an enhancement to the MAX-LOG-MAP algorithm by
adding a traceback operation similar to that used in the
Viterbi algorithm, and devise a new efficient way to
initialize the start state of the traceback. This enhancement
is effective for each decoding iteration, and provides
saving on top of existing techniques such as early
termination and memory optimizations. It reduces the
computational complexity by an additional 15%, without
incurring any performance penalty.

1. INTRODUCTION

As turbo coding is being considered for use in portable
and battery operated systems such as 3G cellular [1][2],
energy efficiency is emerging as one of the chief design
considerations. To reduce the energy consumption of the
soft-output decoding, we propose a set of algorithmic
optimizations that lower the computational complexity,
without sacrificing decoding performance. Furthermore,
our improvements are interoperable with existing low-
power techniques.

One of most powerful exiting ways to reduce the
energy consumption is limiting the number of decoding
iterations by means of a stop criterion [3][4]. Thul et al.
[3] and Garrett et al. [4] observed that only static
algorithmic optimizations, which are effective at each
decoding step, can yield additional savings. Techniques
that kick in at later iterations, have limited effectiveness as
they are executed very infrequently due to the early
termination. Our optimization is static, and thus yields
savings above and beyond those of early termination.

2. DECODING ALGORITHM PRINCIPLE

2.1. MAP versus SOVA

Our new scheme is essentially a hybrid between the
two classes of existing decoding algorithms: Maximum A
Posteriori (MAP) and Soft-Output Viterbi Algorithm
(SOVA). Fossorier et al. have proven a basic relationship
between these two classes, namely that the MAX-LOG-
MAP variant is equivalent to an improved version of

SOVA, despite the fact that the algorithms themselves are
very dissimilar [5]. Although the SOVA class is believed
to be less complex than MAP, the improvements to
SOVA have a negative effect on the implementation
efficiency. On the other hand, without the optimizations,
SOVA sacrifices decoding performance.

Furthermore, Vogt and Finger have shown that a
simple scaling factor brings the performance of MAX-
LOG-MAP to within 0.1 dB of that of optimal MAP for
AWGN channels and the settings of the 3G standard [6].
We therefore select the MAX-LOG-MAP algorithm as
our basis to build upon, as its performance is to the
optimal one of MAP, but at lower implementation
complexity. The equivalence reported by Fossorier et al.
[5], served as inspiration to incorporate principles from
SOVA in MAX-LOG-MAP. Our new algorithm that is
described in this paper reduces the complexity even
further, while maintaining the same level of decoding
performance.

2.2. MAX-LOG-MAP

Before we can introduce our enhancement, we first
briefly review MAX-LOG-MAP. For more details, we
refer to Benedetto et al. [7]. For each position k in the
input block of size N, the log-likelihood of the decision
bits uk is calculated as:
 (1)

Qk
i (with i = 0, 1) is given by (2). It is the logarithm of

the probability of the most likely codeword c that
corresponds to uk = i, given the entire received block. In
general, Rx

y denotes the received information from
position x to y.

 (2)

This can be further decomposed into:

 (3)
In equation, s is the trellis state that is reached from

state s’ with a decision bit uk = i. The branch metrics k

capture the information from the channel. The forward
state metrics k and backward state metrics k are
obtained through a forward and backward recursion
respectively as given by (5) and (6). Here, Sk is the trellis
state at position k. Note that the and metrics relate the

IV - 6450-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡

(b)

 recursion and
 traceback

(c)

 calculation
without storage

 recalculation
and storage

(d)

traceback
initialization

 recursion
and storage

 recursion

 recursion and
L(uk) calculation

(a)

Figure 1 – Graphic representation of the decoding algorithm alternatives

21211
1 , ssssQ kkkk

ssssQ kkk
u

k
k

1
1

1 ,''max

ssssQ kkk
u

k
k

1
0

0 ,''max

ssssSRs kk
Ss

k
k

k ,''maxPrlog 11
'

1
1

','maxPrlog 1
'

ssssSRs kk
Ss

k
N
kk

k
kkkk RsSsSss ,,'Prlog,'

21211
0 , ssssQ kkkk

probability of being in a state at position k to all the
received information before or after k respectively.

 (4)

 (5)

 (6)

2.2. Traceback Enhancement

Maximum Likelihood Decoding (MLD) gives the
most probable transmitted codeword given the received
sequence, and marks the most likely path through the
trellis. From (2), it can be observed that the max
operation of either Qk

0 or Qk
1 selects the branch from this

maximum likelihood path at point k, depending whether
this branch corresponds to i = 0 or i = 1. This was also
observed in the equivalence proof between the MAX-
LOG-MAP algorithm and SOVA [5].

In other words, assuming the maximum likelihood
path at point k runs from state s1 to state s2 and arbitrarily
choosing the constant in (3) equal to zero, the calculation
of Qk

0 or Qk
1 is simplified considerably as follows:

If (maximum likelihood path) uk = 0, s1 s2, then

 else (maximum likelihood path) uk = 1, s1 s2, then

 (7)

The maximum likelihood path can calculated with the
traditional Viterbi algorithm, a technique that also forms
the basis of SOVA. More specifically, it is obtained by a
forward recursion of state metrics as in (5), followed by a
trace back procedure. Ideally, this traceback starts at the
end of the data block. However, the Viterbi algorithm can
be simplified with minimum performance loss by

initializing the traceback at an intermediate point,
followed by an initial traceback of sufficient depth to
provide convergence [8]. Knowledge of the maximum
likelihood path enables us to use the simplified
expressions of (7).

3. ARCHITECTURAL ALTERNATIVES

3.1. Traditional Sliding Window

We use the graphical representation of [9] to illustrate
the different architectural alternatives of our traceback
enhanced MAX-LOG-MAP algorithm. Figure 1a shows
the sequence of operations for the traditional MAX-LOG-
MAP algorithm. The sliding window approach is used to
limit the state metric storage [10]. The x-axis represents
the decoding time, while the y-axis denotes the bit
position k. The state metrics are calculated via the
forward recursion and stored in memory. After an initial
backward recursion to ensure convergence of the sliding
window approach, valid metrics are calculated and
combined with the stored metrics to generate the output
likelihoods L(uk) based on equations (1)-(3).

3.2. Traceback with Forward Metric Storage

The most straightforward way to utilize knowledge of
the maximum likelihood path is illustrated in figure 1b.
While calculating the forward metrics, the path
decisions are stored in a separate traceback memory. The
initial recursion is accompanied by an initial traceback.
When both have converged, the outputs can now be
calculated using (5) where the maximum likelihood path
is obtained from the continued traceback. However, due to
the initial traceback, more metrics need to be
calculated before the backward process can start. This
results in a tripling of the required metric storage, as can
be observed by comparing the production-consumption
distance of these metrics in figures 1a and 1b.

3.3. Traceback with Forward Metric Recalculation

A way to reduce the memory requirements is illustrated
in figure 1c. Instead of storing the metrics during the

IV - 646

➡ ➡

sSR k
N

1Prlog

sS

RRsS
ss

k

NN
k

kk Pr

PrPr
log)()(

11

sSRsSRss k
N
kk

k
kk PrlogPrlog 1

1

initial forward recursion, only the path decisions are
saved. After a time offset, the metrics are recalculated
and stored, leading to state metric storage requirements
identical to those of the original algorithm of figure 1a.
These recalculations can be heavily simplified be utilizing
the stored path decisions. Only one addition of equation
(5) needs to be performed for each state, and no max
operation is required as the surviving branch is already
known.

3.4. Traceback with Initialization

The inefficiencies still present in the two previous
solutions arise from the fact that extra forward metrics
need to be calculated compared to the traditional sliding
window algorithm in order to support the initial traceback.
This initial traceback is required for convergence reasons.

However, it is possible to initialize the traceback
directly when and metrics are available. For each state
s and each bit position k, the sum of these two metrics can
be interpreted from (5) and (6) as:

 (8)

Using Bayes’ rule, this can be rewritten as (9). As there
is no a priori information on the probability of each state,
the sum of the forward and backward metrics is thus an
indication of the log likelihood of being in state s at index
k, given the entire received sequence. The maximum
likelihood path thus runs through the state with the
highest value for this metric. As a result, this state can be
used directly to initialize the traceback, without the need
for extra convergence steps.

 (9)

Strictly speaking, expression (9) is only correct if the
forward and backward metrics are calculated from the
start and end of the block respectively. However, the
sliding window approach is expected to yield a
sufficiently accurate approximation. The simulations in
section 4 will validate this assumption. The resulting
architecture is depicted in figure 1d. While performing the

recursion, the path decisions are stored in a traceback
memory. After the initial metrics have converged, which
is indicated by the black circles in figure 1d, the start state
of the traceback is set to the state s that maximizes (9).
The output likelihoods are calculated via (7) by using the
maximum likelihood path obtained from the traceback.

Note that the extra calculations to determine the most
likely state (i.e. adding the and for each state,

followed by determining the maximum) only need to be
performed once for each sliding window. A detailed
comparison between our traceback enhanced algorithm
and the traditional setup is given in section 4.

4. EVALUATION

4.1. Decoding Performance

First, we validate that our traceback enhanced MAX-
LOG-MAP algorithm indeed does not suffer a loss in
decoding performance. Figure 2 shows the simulation
results for a 4-state parallel concatenated turbo code with
generator polynomial (7,5) and a block length of 400 bits.
There are two component encoders that are both
terminated. The sliding window size is chosen equal to
20, and a scaling factor of 0.8 is applied [6]. The bit error
rate (BER) after each of the six decoding iterations is
plotted. Results are averaged over a large number of
simulation runs where for each data point at least 100
block errors are recorded.

The solid lines correspond to the traditional sliding
window MAX-LOG-MAP algorithm shown in figure 1a.
The circles mark the performance of our new traceback
enhanced MAX-LOG-MAP algorithm with the traceback
initialization of section 3.4 and figure 1d. We can verify
that virtually no performance degradation occurs. The
other two options which were discussed in sections 3.2
and 3.3 are not shown in figure 2 to avoid cluttering. We
have verified that their performance is the same as the one
shown for the traceback enhanced scheme with traceback
initialization (section 3.4). Although not shown here due
to space limitations, these experiments were repeated for
other codes and interleaver sizes, resulting in similar fits.

4.2. Computational Efficiency

 The main benefit of our new schemes is a reduction in
computational complexity, which lowers the decoder
energy consumption. Table I gives a high-level summary

SNR (dB)

BER

traditional MAX-
Log-MAP

traceback enhanced
MAX-Log-MAP

1 iter.

2 iter.

3 iter.
4, 5, 6
 iter.

Figure 2 – Decoding performance comparison

IV - 647

➡ ➡

of the computational cost of the MAX-LOG-MAP
algorithm in terms of additions (ADD) and maximum
operations (MAX) for each index k. In this table, S is the
number of states of the component code. An extra 3
additions is required to generate the branch metrics [7],
which are calculated once and retrieved from a cache.
There are three metric recursions and one L(uk)
calculation, resulting in the rough totals listed in the last
row of Table I.

Table I – Computational cost of MAX-LOG-MAP

ADD MAX
and recursion (each) 2 S S

L(uk) calculation 4 S+1 2 (S-1)
total 10 S+4 5 S-2

The first row of Table II summarizes the savings in
computational complexity that result from our traceback
enhancement technique and which are derived from
equation (5). There is, however, an additional cost
involved, which is different for the three alternatives
discussed in sections 3.2, 3.3 and 3.4. These are listed in
the lower three rows of the table, and include the average
number of traceback operations per bit position and the
extra memory cost. Here, L denotes the sliding window
length and w is the bit width of the state metrics.

Table II – Savings and costs in computational from
traceback enhancement

ADD MAX Trace
-back

Extra memory:
traceback and

 (bits)
savings 2 S-2 S-1

3.2 2 L S + 2 L S w
3.3 S 2 L S

extra
cost

3.4 S/L (S-1)/L 1 L S

Table III – Relative savings for different number of states

S = 2 S = 4 S = 8
3.2 0.97 0.89 0.84
3.3 1.03 0.95 0.91
3.4 0.95 0.88 0.84

Table III compares the relative computational
efficiency of our three schemes to the traditional MAX-
LOG-MAP algorithm, for different number of states. It is
assumed an addition, a MAX operation and a traceback
operation are equally costly. Although this is a rough
approximation, it gives us a yardstick for a first cut
comparison of the different schemes. The traceback
initialized scheme of section 3.4 is the most efficient, and

is more beneficial for codes with a higher number of
states (i.e. a larger constraint length).

5. CONCLUSIONS

In this paper, we introduced a novel modification to
the MAX-LOG-MAP algorithm which borrows the
traceback principle from the SOVA and Viterbi algorithm.
By utilizing knowledge of the maximum likelihood path,
the calculation of the output likelihood ratios can be
simplified significantly. We presented three alternative
approaches for obtaining a good start state of the
traceback operation. The most promising approach is to
directly initialize the traceback based on the forward and
backward state metrics. This results in a computational
complexity reduction of up to 15%, without any
performance penalty.

6. ACKNOWLEDGMENTS

Effort sponsored by the Defense Advanced Research
Projects Agency (DARPA) and Air Force Research
Laboratory, under agreement number F33615-02-2-4005. The
U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any
copyright annotation thereon.

7. REFERENCES

[1] 3rd Generation Partnership Project (3GPP), “Technical
Specification Group Radio Access Network; Multiplexing and
channel coding (FDD)”, TS 25.212 v5.0.0, http://www.3gpp.org.
[2] 3rd Generation Partnership Project 2 (3GPP2), “Physical
layer standards for cdma2000 spread spectrum systems,” ARIB
STD-T64-C.S20002-A, http://www.3gpp2.org.
[3] M. Thul, T. Vogt, F. Gilbert, and N. Wehn, “Evaluation of
algorithm optimizations for low-power turbo-decoder
implementations,” IEEE ICASSP’02, Orlando, FL, pp.III-3101-
4, May 2002.
[4] D. Garrett, B. Xu, and C. Nicol, “Energy efficient turbo
decoding for 3G mobile”, ACM/IEEE ISLPED’01, Huntington
Beach, CA, pp. 328-33, August 2001.
[5] M. Fossorier, F. Burkert, S. Lin, and J. Hagenauer, "On the
equivalence between SOVA and Max-Log-MAP decodings,"
IEEE Comm. Letters, Vol.2, No.5, pp.137-139, May 1998.
[6] J. Vogt, and A. Finger, "Improving the max-log-MAP turbo
decoder", Electronics Letters, Vol.36, No.23, pp.1937-39, Nov.
2000.
[7] S;. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, "A
soft-input soft-output APP module for iterative decoding of
concatenated codes," IEEE Comm. Letters, Vol.1, No.1, pp. 22-
24, Jan. 1997.
[8] G. Forney, “The Viterbi algorithm,” Proceedings IEEE,
Vol.61, pp.268-278, 1973.
[9] C. Schurgers, F. Catthoor, M. Engels, “Memory optimization
of MAP turbo decoder algorithms,” IEEE Trans. on VLSI
Systems, Vol.9, No.2, pp.305-312, April 2001.
[10] S. Benedetto, D. Divsalar, G. Montorsi, F. Pollara,
“Algorithm for continuous decoding of turbo codes,” Electronics
Letters, Vol.32, No.4, pp. 314-315, Feb. 1996.

IV - 648

➡ ➠

