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ABSTRACT

Soft-input soft-output algorithms are the principal 
component of the iterative decoding used in turbo codes 
and other ‘turbo’ feedback schemes. To enable efficient 
implementation, especially on energy constrained 
platforms such as portable devices, it is crucial to reduce 
the computational complexity to a minimum. We propose 
an enhancement to the MAX-LOG-MAP algorithm by 
adding a traceback operation similar to that used in the 
Viterbi algorithm, and devise a new efficient way to 
initialize the start state of the traceback. This enhancement 
is effective for each decoding iteration, and provides 
saving on top of existing techniques such as early 
termination and memory optimizations. It reduces the 
computational complexity by an additional 15%, without 
incurring any performance penalty. 

1. INTRODUCTION 

As turbo coding is being considered for use in portable 
and battery operated systems such as 3G cellular [1][2], 
energy efficiency is emerging as one of the chief design 
considerations. To reduce the energy consumption of the 
soft-output decoding, we propose a set of algorithmic 
optimizations that lower the computational complexity, 
without sacrificing decoding performance. Furthermore, 
our improvements are interoperable with existing low-
power techniques. 

One of most powerful exiting ways to reduce the 
energy consumption is limiting the number of decoding 
iterations by means of a stop criterion [3][4]. Thul et al. 
[3] and Garrett et al. [4] observed that only static 
algorithmic optimizations, which are effective at each 
decoding step, can yield additional savings. Techniques 
that kick in at later iterations, have limited effectiveness as 
they are executed very infrequently due to the early 
termination. Our optimization is static, and thus yields 
savings above and beyond those of early termination. 

2. DECODING ALGORITHM PRINCIPLE 

2.1. MAP versus SOVA 

Our new scheme is essentially a hybrid between the 
two classes of existing decoding algorithms: Maximum A 
Posteriori (MAP) and Soft-Output Viterbi Algorithm 
(SOVA). Fossorier et al. have proven a basic relationship 
between these two classes, namely that the MAX-LOG-
MAP variant is equivalent to an improved version of 

SOVA, despite the fact that the algorithms themselves are 
very dissimilar [5]. Although the SOVA class is believed 
to be less complex than MAP, the improvements to 
SOVA have a negative effect on the implementation 
efficiency. On the other hand, without the optimizations, 
SOVA sacrifices decoding performance.  

Furthermore, Vogt and Finger have shown that a 
simple scaling factor brings the performance of MAX-
LOG-MAP to within 0.1 dB of that of optimal MAP for 
AWGN channels and the settings of the 3G standard [6]. 
We therefore select the MAX-LOG-MAP algorithm as 
our basis to build upon, as its performance is to the 
optimal one of MAP, but at lower implementation 
complexity. The equivalence reported by Fossorier et al. 
[5], served as inspiration to incorporate principles from 
SOVA in MAX-LOG-MAP. Our new algorithm that is 
described in this paper reduces the complexity even 
further, while maintaining the same level of decoding 
performance. 

2.2. MAX-LOG-MAP 

Before we can introduce our enhancement, we first 
briefly review MAX-LOG-MAP. For more details, we 
refer to Benedetto et al. [7]. For each position k in the 
input block of size N, the log-likelihood of the decision 
bits uk is calculated as: 
 (1) 

Qk
i (with i = 0, 1) is given by (2). It is the logarithm of 

the probability of the most likely codeword c that 
corresponds to uk = i, given the entire received block. In 
general, Rx

y denotes the received information from 
position x to y.

 (2) 

This can be further decomposed into: 

 (3) 
In equation, s is the trellis state that is reached from 

state s’ with a decision bit uk = i. The branch metrics k

capture the information from the channel. The forward 
state metrics k and backward state metrics k are 
obtained through a forward and backward recursion 
respectively as given by (5) and (6). Here, Sk is the trellis 
state at position k. Note that the  and  metrics relate the 

IV - 6450-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡



(b)

 recursion and 
 traceback

(c)

 calculation 
without storage

 recalculation 
and storage

(d)

traceback
initialization 

 recursion 
and storage 

 recursion 

 recursion and 
L(uk) calculation 

(a)

Figure 1 – Graphic representation of the decoding algorithm alternatives 
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probability of being in a state at position k to all the 
received information before or after k respectively. 

 (4) 

 (5) 

 (6) 

2.2. Traceback Enhancement 

Maximum Likelihood Decoding (MLD) gives the 
most probable transmitted codeword given the received 
sequence, and marks the most likely path through the 
trellis. From (2), it can be observed that the max
operation of either Qk

0 or Qk
1 selects the branch from this 

maximum likelihood path at point k, depending whether 
this branch corresponds to i = 0 or i = 1. This was also 
observed in the equivalence proof between the MAX-
LOG-MAP algorithm and SOVA [5]. 

In other words, assuming the maximum likelihood 
path at point k runs from state s1 to state s2 and arbitrarily 
choosing the constant in (3) equal to zero, the calculation 
of Qk

0 or Qk
1 is simplified considerably as follows: 

If (maximum likelihood path) uk = 0, s1  s2, then 

 else (maximum likelihood path) uk = 1, s1  s2, then

 (7) 

The maximum likelihood path can calculated with the 
traditional Viterbi algorithm, a technique that also forms 
the basis of SOVA. More specifically, it is obtained by a 
forward recursion of state metrics as in (5), followed by a 
trace back procedure. Ideally, this traceback starts at the 
end of the data block. However, the Viterbi algorithm can 
be simplified with minimum performance loss by 

initializing the traceback at an intermediate point, 
followed by an initial traceback of sufficient depth to 
provide convergence [8]. Knowledge of the maximum 
likelihood path enables us to use the simplified 
expressions of (7). 

3. ARCHITECTURAL ALTERNATIVES 

3.1. Traditional Sliding Window 

We use the graphical representation of [9] to illustrate 
the different architectural alternatives of our traceback 
enhanced MAX-LOG-MAP algorithm. Figure 1a shows 
the sequence of operations for the traditional MAX-LOG-
MAP algorithm. The sliding window approach is used to 
limit the state metric storage [10]. The x-axis represents 
the decoding time, while the y-axis denotes the bit 
position k. The  state metrics are calculated via the 
forward recursion and stored in memory. After an initial 
backward  recursion to ensure convergence of the sliding 
window approach, valid   metrics are calculated and 
combined with the stored  metrics to generate the output 
likelihoods L(uk) based on equations (1)-(3). 

3.2. Traceback with Forward Metric Storage 

The most straightforward way to utilize knowledge of 
the maximum likelihood path is illustrated in figure 1b. 
While calculating the forward metrics, the path 
decisions are stored in a separate traceback memory. The 
initial recursion is accompanied by an initial traceback. 
When both have converged, the outputs can now be 
calculated using (5) where the maximum likelihood path 
is obtained from the continued traceback. However, due to 
the initial traceback, more metrics need to be 
calculated before the backward process can start. This 
results in a tripling of the required metric storage, as can 
be observed by comparing the production-consumption 
distance of these metrics in figures 1a and 1b. 

3.3. Traceback with Forward Metric Recalculation 

A way to reduce the memory requirements is illustrated 
in figure 1c. Instead of storing the  metrics during the 
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initial forward recursion, only the path decisions are 
saved. After a time offset, the metrics are recalculated 
and stored, leading to state metric storage requirements 
identical to those of the original algorithm of figure 1a. 
These recalculations can be heavily simplified be utilizing 
the stored path decisions. Only one addition of equation 
(5) needs to be performed for each state, and no max 
operation is required as the surviving branch is already 
known.

3.4. Traceback with Initialization 

The inefficiencies still present in the two previous 
solutions arise from the fact that extra forward metrics 
need to be calculated compared to the traditional sliding 
window algorithm in order to support the initial traceback. 
This initial traceback is required for convergence reasons. 

However, it is possible to initialize the traceback 
directly when and  metrics are available. For each state 
s and each bit position k, the sum of these two metrics can 
be interpreted from (5) and (6) as:   

 (8) 

Using Bayes’ rule, this can be rewritten as (9). As there 
is no a priori information on the probability of each state, 
the sum of the forward and backward metrics is thus an 
indication of the log likelihood of being in state s at index 
k, given the entire received sequence.  The maximum 
likelihood path thus runs through the state with the 
highest value for this metric. As a result, this state can be 
used directly to initialize the traceback, without the need 
for extra convergence steps. 

 (9) 

Strictly speaking, expression (9) is only correct if the 
forward and backward metrics are calculated from the 
start and end of the block respectively. However, the 
sliding window approach is expected to yield a 
sufficiently accurate approximation. The simulations in 
section 4 will validate this assumption. The resulting 
architecture is depicted in figure 1d. While performing the 

recursion, the path decisions are stored in a traceback 
memory. After the initial metrics have converged, which 
is indicated by the black circles in figure 1d, the start state 
of the traceback is set to the state s that maximizes (9). 
The output likelihoods are calculated via (7) by using the 
maximum likelihood path obtained from the traceback. 

Note that the extra calculations to determine the most 
likely state (i.e. adding the and  for each state, 

followed by determining the maximum) only need to be 
performed once for each sliding window. A detailed 
comparison between our traceback enhanced algorithm 
and the traditional setup is given in section 4.  

4. EVALUATION 

4.1. Decoding Performance 

First, we validate that our traceback enhanced MAX-
LOG-MAP algorithm indeed does not suffer a loss in 
decoding performance. Figure 2 shows the simulation 
results for a 4-state parallel concatenated turbo code with 
generator polynomial (7,5) and a block length of 400 bits. 
There are two component encoders that are both 
terminated. The sliding window size is chosen equal to 
20, and a scaling factor of 0.8 is applied [6]. The bit error 
rate (BER) after each of the six decoding iterations is 
plotted. Results are averaged over a large number of 
simulation runs where for each data point at least 100 
block errors are recorded. 

The solid lines correspond to the traditional sliding 
window MAX-LOG-MAP algorithm shown in figure 1a. 
The circles mark the performance of our new traceback 
enhanced MAX-LOG-MAP algorithm with the traceback 
initialization of section 3.4 and figure 1d. We can verify 
that virtually no performance degradation occurs. The 
other two options which were discussed in sections 3.2 
and 3.3 are not shown in figure 2 to avoid cluttering. We 
have verified that their performance is the same as the one 
shown for the traceback enhanced scheme with traceback 
initialization (section 3.4).  Although not shown here due 
to space limitations, these experiments were repeated for 
other codes and interleaver sizes, resulting in similar fits. 

4.2. Computational Efficiency 

 The main benefit of our new schemes is a reduction in 
computational complexity, which lowers the decoder 
energy consumption. Table I gives a high-level summary 

SNR (dB) 

BER

traditional MAX-
Log-MAP 

traceback enhanced
MAX-Log-MAP 

1 iter.

2 iter.

3 iter.
4, 5, 6 
 iter. 

Figure 2 – Decoding performance comparison
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of the computational cost of the MAX-LOG-MAP 
algorithm in terms of additions (ADD) and maximum 
operations (MAX) for each index k. In this table, S is the 
number of states of the component code.  An extra 3 
additions is required to generate the branch metrics  [7], 
which are calculated once and retrieved from a cache. 
There are three metric recursions and one L(uk)
calculation, resulting in the rough totals listed in the last 
row of Table I. 

Table I – Computational cost of MAX-LOG-MAP 

ADD MAX 
and recursion (each) 2 S S

L(uk) calculation 4 S+1 2 (S-1)
total 10 S+4 5 S-2

The first row of Table II summarizes the savings in 
computational complexity that result from our traceback 
enhancement technique and which are derived from 
equation (5). There is, however, an additional cost 
involved, which is different for the three alternatives 
discussed in sections 3.2, 3.3 and 3.4. These are listed in 
the lower three rows of the table, and include the average 
number of traceback operations per bit position and the 
extra memory cost. Here, L denotes the sliding window 
length and w is the bit width of the state metrics. 

Table II – Savings and costs in computational from 
traceback enhancement 

ADD MAX Trace
-back

Extra memory: 
traceback and 

 (bits) 
savings 2 S-2 S-1   

3.2   2 L S + 2  L S w
3.3 S  2 L S

extra
cost

3.4 S/L (S-1)/L 1 L S

Table III – Relative savings for different number of states  

S = 2 S = 4 S = 8 
3.2 0.97 0.89 0.84 
3.3 1.03 0.95 0.91 
3.4 0.95 0.88 0.84 

Table III compares the relative computational 
efficiency of our three schemes to the traditional MAX-
LOG-MAP algorithm, for different number of states. It is 
assumed an addition, a MAX operation and a traceback 
operation are equally costly. Although this is a rough 
approximation, it gives us a yardstick for a first cut 
comparison of the different schemes. The traceback 
initialized scheme of section 3.4 is the most efficient, and 

is more beneficial for codes with a higher number of 
states (i.e. a larger constraint length). 

5. CONCLUSIONS 

In this paper, we introduced a novel modification to 
the MAX-LOG-MAP algorithm which borrows the 
traceback principle from the SOVA and Viterbi algorithm. 
By utilizing knowledge of the maximum likelihood path, 
the calculation of the output likelihood ratios can be 
simplified significantly. We presented three alternative 
approaches for obtaining a good start state of the 
traceback operation. The most promising approach is to 
directly initialize the traceback based on the forward and 
backward state metrics. This results in a computational 
complexity reduction of up to 15%, without any 
performance penalty. 

6. ACKNOWLEDGMENTS 

Effort sponsored by the Defense Advanced Research 
Projects Agency (DARPA) and Air Force Research 
Laboratory, under agreement number F33615-02-2-4005.  The 
U.S. Government is authorized to reproduce and distribute 
reprints for Governmental purposes notwithstanding any 
copyright annotation thereon. 

7. REFERENCES 

[1] 3rd Generation Partnership Project (3GPP), “Technical 
Specification Group Radio Access Network; Multiplexing and 
channel coding (FDD)”, TS 25.212 v5.0.0, http://www.3gpp.org. 
[2] 3rd Generation Partnership Project 2 (3GPP2),  “Physical 
layer standards for cdma2000 spread spectrum systems,” ARIB
STD-T64-C.S20002-A, http://www.3gpp2.org. 
[3] M. Thul, T. Vogt, F. Gilbert, and N. Wehn, “Evaluation of 
algorithm optimizations for low-power turbo-decoder 
implementations,” IEEE ICASSP’02, Orlando, FL, pp.III-3101-
4, May 2002. 
[4] D. Garrett, B. Xu, and C. Nicol, “Energy efficient turbo 
decoding for 3G mobile”, ACM/IEEE ISLPED’01, Huntington 
Beach, CA, pp. 328-33, August 2001. 
[5] M. Fossorier, F. Burkert, S. Lin, and J. Hagenauer, "On the 
equivalence between SOVA and Max-Log-MAP decodings," 
IEEE Comm. Letters, Vol.2, No.5, pp.137-139, May 1998. 
[6] J. Vogt, and A. Finger, "Improving the max-log-MAP turbo 
decoder", Electronics Letters, Vol.36, No.23, pp.1937-39, Nov. 
2000.
[7] S;. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, "A 
soft-input soft-output APP module for iterative decoding of 
concatenated codes," IEEE Comm. Letters, Vol.1, No.1, pp. 22-
24, Jan. 1997. 
[8] G. Forney, “The Viterbi algorithm,” Proceedings IEEE,
Vol.61, pp.268-278, 1973. 
[9] C. Schurgers, F. Catthoor, M. Engels, “Memory optimization 
of MAP turbo decoder algorithms,” IEEE Trans. on VLSI 
Systems, Vol.9, No.2, pp.305-312, April 2001. 
[10] S. Benedetto, D. Divsalar, G. Montorsi, F. Pollara, 
“Algorithm for continuous decoding of turbo codes,” Electronics 
Letters, Vol.32, No.4, pp. 314-315, Feb. 1996. 

IV - 648

➡ ➠


