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9 rue Charles Fourier

91011 Evry cedex France
Phillip.Regalia@int-evry.fr

ABSTRACT

The turbo decoding algorithm has met with intense study
over the past decade, in an attempt to harness the full
power of the “turbo principle”. Here we consider applying
contractivity arguments to the turbo decoding algorithm, to
study convergence even for short block lengths.

1. INTRODUCTION

The turbo decoding algorithm of a decade ago [1]–[3] pro-
vided a major breakthrough in reliable communications.
Turbo decoding involves information exchange between
two decoders, in which the extrinsic information values
from one furnish the pseudo priors of the other. Attempts
to understand this information exchange include EXtrinsic
Information Transfer (or EXIT) charts [4], density evolu-
tion among successive iterations [5], and approximating
the extrinsic information values by Gaussian random vari-
ables [6]; additional approaches include cross entropy min-
imization [7] and marginal projections [8]. Each approach
lends valuable insight into the behavior of the turbo decod-
ing algorithm, but many of the results appeal to asymptotic
approximations involving the law of large numbers and/or
the central limit theorem, and appear applicable only for
rather long data blocks (e.g., k = 220 symbols per data
packet in [4]); the results of such analyses do not give re-
liable indications of the behavior for shorter block lengths,
which are of greater interest in two-way communications.

The development here explores contractivity (or pas-
sivity) arguments applied to turbo decoding, without ap-
pealing to large sample approximations. After a review of
the turbo decoding algorithm, we isolate “desirable” sta-
tionary points in terms of valid code configurations, and
then study Lipschitz constants in their vicinities. Analytic
bounds on Lipschitz constants are often difficult to obtain,
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and turbo decoding presents no exception. Nonetheless,
the approach developed here helps appreciate the perfor-
mance losses incurred using shorter block lengths.

2. TURBO DECODING ALGORITHM

Consider a binary (0 or 1) sequence ξ = (ξ1, . . . ,ξk) coded
twice, to produce two codewords of n bits:

(ξ1, . . . ,ξk,η1, . . . ,ηn−k) and (ξ1, . . . ,ξk,ζ1, . . . ,ζn−k)

Here {ηi} and {ζi} are the binary parity-check bits fur-
nished by either coder. The bits are converted to antipodal
(±1) form and transmitted over an additive white Gaussian
noise channel to give

xi = (2ξi −1)+bx,i i = 1,2, . . . , k

yi = (2ηi −1)+by,i i = 1,2, . . . ,n−k

zi = (2ζi −1)+bz,i i = 1,2, . . . ,n−k

where the noise samples bx,i, by,i and bz,i are mutually
independent, sharing a common variance σ2.

The optimum decoding rule calculates the bitwise a
posterior probability ratios

Pr(ξi = 1|x,y,z)
Pr(ξi = 0|x,y,z)

=

∑
ξ :ξi=1

Pr(ξ |x,y,z)

∑
ξ :ξi=0

Pr(ξ |x,y,z)
i = 1,2, . . . , k,

=

∑
ξ :ξi=1

p(x|ξ ) p(y|ξ ) p(z|ξ )Pr(ξ )

∑
ξ :ξi=0

p(x|ξ ) p(y|ξ ) p(z|ξ )Pr(ξ )
(1)

involving the a priori probability function Pr(ξ ) and the
three likelihood functions p(x|ξ ), p(y|ξ ) and p(z|ξ ). The
decoding complexity grow exponentially with the block
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length k, since there are 2k evaluations of ξ = (ξ1, . . . ,ξk)
involved in the likelihood functions.

If we instead consider only x and y, or only x and
z, then two decoding rules using only partial information
become

Pr(ξi = 1|x,y)
Pr(ξi = 0|x,y)

=

∑
ξ :ξi=1

p(x|ξ ) p(y|ξ )Pr(ξ )

∑
ξ :ξi=0

p(x|ξ ) p(y|ξ )Pr(ξ )
(2)

Pr(ξi = 1|x,z)
Pr(ξi = 0|x,z)

=

∑
ξ :ξi=1

p(x|ξ ) p(z|ξ )Pr(ξ )

∑
ξ :ξi=0

p(x|ξ ) p(z|ξ )Pr(ξ )
(3)

Using convolutional constituent encoders, x and y form a
Markov chain, as do x and z; either decoding expression
can be reduced to a complexity linear in the block length
k by using the forward-backward algorithm from [9].

Turbo decoding amounts to usurping iteratively the a
priori probability function Pr(ξ ) in (2) [resp., (3)] by a
function which approximates p(z|ξ ) [resp., p(y|ξ )], such
that either expression will then approximate (1) evaluated
for uniform Pr(ξ ). In particular, let

T (ξ ) = T1(ξ1) · · ·Tk(ξk) and U(ξ ) = U1(ξ1) · · ·Uk(ξk)

be two factorable probability functions (to be specified
shortly) which usurp the position reserved for Pr(ξ ) in (3)
and (2), respectively. Since these functions factor into the
products of their marginals, as does

p(x|ξ ) =
1

(
√

2πσ)k
exp

( k∑
i=1

−(xi − (2ξi −1))2

2σ2

)

=
k∏

i=1

1√
2π σ

exp
(−(xi − (2ξi −1))2

2σ2

)

= p(x1|ξ1) p(x2|ξ2) · · · p(xk|ξk)

the evaluation (2) exhibits common factors in the numera-
tor and denominator, leading to the revised form∑
ξ :ξi=1

p(x|ξ ) p(y|ξ )U(ξ )

∑
ξ :ξi=0

p(x|ξ ) p(y|ξ )U(ξ )

=
p(xi|ξi = 1)
p(xi|ξi = 0)

Ui(ξi = 1)
Ui(ξi = 0)

extrinsic
information︷ ︸︸ ︷∑

ξ :ξi=1

p(y|ξ )
∏
j �=i

p(xj |ξj )Uj (ξj )

∑
ξ :ξi=0

p(y|ξ )
∏
j �=i

p(xj |ξj )Uj (ξj )

The overbraced term gives the extrinsic information value,
and we choose the ratio Ti(ξi = 1)/Ti(ξi = 0) to match this

value, for each i. We then replace Pr(ξ ) in the second
decoder (3) by T (ξ ); the evaluation factors analogously
upon replacing p(y|ξ ) by p(z|ξ ). The new extrinsic infor-
mation values determine the ratios Ui(ξi = 1)/Ui(ξi = 0)
which replace the a priori probability values Pr(ξ ) in the
first decoder (2), and the process iterates. By letting a
superscript (m) denote an iteration index, the coupling of
decoders takes the form

T (m)
i (1)

T (m)
i (0)

=

∑
ξ :ξi=1

p(y|ξ )
∏
j �=i

p(xj |ξj )U
(m)
j (ξj )

∑
ξ :ξi=0

p(y|ξ )
∏
j �=i

p(xj |ξj )U
(m)
j (ξj )

(4)

U (m+1)
i (1)

U (m+1)
i (0)

=

∑
ξ :ξi=1

p(z|ξ )
∏
j �=i

p(xj |ξj )T
(m)
j (ξj )

∑
ξ :ξi=0

p(z|ξ )
∏
j �=i

p(xj |ξj )T
(m)
j (ξj )

(5)

and at convergence the pseudo-posterior ratios which result
from either decoder become

Pr(ξi = 1|x,y,z)
Pr(ξi = 0|x,y,z)

← Ti(1)
Ti(0)

Ui(1)
Ui(0)

p(xi|ξi = 1)
p(xi|ξi = 0)

3. STATIONARY POINTS

Existence of stationary points is proved in [8]; here we
identify the form some may take. In view of the sym-
metry of the relations (4) and (5), we focus our attention
initially on (4), since the results will then apply to (5)
upon permuting variables.

Let ξ̄ = (ξ̄1, . . . , ξ̄k) be a candidate configuration of the
binary information bits, and let ξ̄0

i and ξ̄1
i result by setting

the i-th bit to 0 or 1. For example, with ξ̄ = (1,0,1), we
have

ξ̄0
1 = (0,0,1) and ξ̄1

1 = (1,0,1),

and so on. We say that U(ξ ) = U1(ξ1) · · ·Uk(ξk) coincides
with the configuration ξ̄ when Ui(1) = ξ̄i for all i, assum-
ing Ui(0)+Ui(1) = 1.

Lemma 1 If U(ξ ) coincides with a binary configuration ξ̄ ,
then

Ti(1)
Ti(0)

=
p(y|ξ̄1

i )

p(y|ξ̄0
i )

For the proof, the term
∏

j �=i p(xj |ξj )Uj (ξj ) from (4) has
all Uj (ξj ) as either 0 or 1. Only that product for which
each Uj (ξj ) yields 1 survives in the sum of the numerator
or denominator, corresponding to ξ̄1

i in the numerator, or
ξ̄0

i in the denominator; the surviving product then cancels
in the ratio. �

Consider now a constituent trellis encoder for which
the final state is pushed to a predetermined configuration
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Fig. 1. Illustrating a “(5,7)” convolutional coder in recur-
sive systematic form, as well as its constrained trellis.

(typically the zero state). As an example, Figure 1 shows a
“(5,7)” recursive systematic convolutional encoder of rate
1/2, along with its trellis diagram. No matter which state
is reached at time k− 2, one can always choose the final
two input samples ξk−1 and ξk to push the final state to
zero at time k. The reduces the number of candidate input
configurations ξ̄ to 2k−2 in this case. This constraint enters
naturally into the decoding algorithm of [9] (since the
final state is known with certainty), effectively annihilating
those likelihood evalutions p(y|ξ ) for which ξ is not a
valid input bit combination of the constrained trellis.

Theorem 1 Suppose that the minimum Hamming distance
separating valid input configurations is two or greater. If
U(ξ ) matches a valid input configuration ξ̄ , and p(x|ξ̄ ) ×
p(y|ξ̄ ) �= 0, then T (ξ ) matches this same input configuration.

For the proof, we note that ξ̄0
i and ξ̄1

i differ in one bit
position (Hamming distance 1), and therefore one of these
must be exluded from the set of valid input configurations.
As such,

p(y|ξ̄1
i ) =

{
p(y|ξ̄ ), if ξ̄ = ξ̄1

i ;

0, otherwise;

and similarly for p(y|ξ̄0
i ). With p(y|ξ̄ )p(x|ξ̄ ) �= 0, each

ratio Ti(1)/Ti(0) from Lemma 1 is either 0/1 or 1/0; by
scaling Ti(0)+Ti(1) = 1, we obtain Ti(1) = ξ̄i ∈ {0,1}. �

Applying the same reasoning to the other decoder, we
see that stationary points include valid input configura-
tions.

4. CONTRACTIVITY

Suppose U∗(ξ ) and T∗(ξ ) form a stationary point of the
turbo-decoding algorithm. Let Uε denote the set of fac-
torable distributions U(ξ ) =U1(ξ1) · · ·Uk(ξk) in an ε-neigh-

borhood of U∗(ξ ):

Uε = {U(ξ ) : max
i

|U∗,i(1)−Ui(1)|︸ ︷︷ ︸
‖U∗(ξ )−U(ξ )‖

≤ ε}.

Any such U(ξ ) fed to the first decoder will, by continuity,
yield a T (ξ ) which lies “near” T∗(ξ ), in the sense that a
constant β1 exists for which

‖T∗(ξ )−T (ξ )‖ ≤ β1 ‖U∗(ξ )−U(ξ )‖, for all U(ξ ) ∈ Uε .

Let now Tε be the image of Uε obtained from the first
coder. Lipschitz continuity [10] of the second decoder
implies the existence of a constant β2 for which

‖U∗(ξ )−U(ξ )‖ ≤ β2 ‖T∗(ξ )−T (ξ )‖, for all T (ξ ) ∈ Tε .

If β1β2 < 1, the algorithm is locally convergent since, for
any U (m)(ξ ) ∈ Uε ,

‖U∗ −U (m+1)‖ ≤ β2 ‖T∗ −T (m)‖ ≤ β2 β1 ‖U∗ −U (m)‖

If β2 β1 < 1, then U (m+1)(ξ ) remains in Uε ; by induction

‖U∗ −U (m+l)‖ ≤ (β2 β1)l ‖U∗ −U (m)‖

which tends exponentially fast to zero as l grows.
Explicit expressions for the Lipschitz constants are

difficult to obtain, although Monte-Carlo simulations can
yield estimates for different values of the noise variance
and block length. In particular, let U∗ be a stationary point
at a valid input configuration; it generates T∗ to be passed
to the other decoder. We can then generate (randomly or
deterministically) different choices for U in the vicinity
of U∗, and measure the T which results in a vicinity of
T∗. The ratio β̂1 = ‖U∗−U‖/‖T∗−T‖ is then an underesti-
mate of the Lipschitz constant; by generating a sufficiently
dense set of U , and retaining the maximum of β̂1 over this
set, we can obtain a numerical estimate of β1.

Figure 2 shows the estimated Lipschitz constant for the
(5,7) trellis decoder (cf. Figure 1) versus the channel noise
variance for different block lengths, and a particular ε.
The horizontal axis uses the raw signal-to-noise ratio over
the channel instead of Eb/N0, since this latter depends on
the code rate and would therefore be different between one
constituent code and the concatenated code for the same
noise variance. The figure confirms that the Lipschitz
constant becomes more favorable as the noise variance
decreases and/or the block length increases.

Using a parallel concatenated code scheme, the values
β1 and β2 are the same. For a given block length local
convergence to the correct code word should occur, based
on this analysis, when the Lipschitz constant is less than
one. For a short block length (64 symbols for the sys-
tematic bits) the raw signal-to-noise ratio of the channel
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Fig. 2. Estimated Lipschitz constant of the (5,7) decoder
versus the raw signal-to-noise ratio, for different block
lengths, using ε = 0.2.
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Fig. 3. Estimated Lipschitz constant of the (5,7) decoder
versus the raw signal-to-noise ratio, for different block
lengths, using ε = 0.3.

should be about 5 dB, whereas for a longer block length,
the raw signal-to-noise ratio can drop to about 0 dB.

By increasing ε, the Lipschitz constant also increases,
as illustrated in Figure 3, giving less favorable contrac-
tion. Since the contractivity increases near a convergent
point, the local convergence rate is likely superlinear. In
exchange, until a given iteration falls within a basin of
attraction, convergence may be rather slow.

The drop in contractivity for shorter block comes per-
haps as no surprise, since Shannon’s arguments [11], [12],
[13] show that, under maximum likelihood decoding, the
probability of error can be bounded by an exponentially
decreasing function of the block length. But the turbo
decoding algorithm does not, in general, implement max-
imum likelihood decoding, which necessitates unearthing
the more direct mechanism identified here.

5. CONCLUDING REMARKS

Our contribution is to show that stationary points exist at
valid input configurations, which should assist the analytic
study of Lipschitz constants mapping pseudo-priors to ex-
trinsic information values. We observe that the Lipschitz
constants worsen with shorter block lengths, but further
study is required.
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