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ABSTRACT

In this paper a novel and computationally inexpensive ana-
lytic mean square error (MSE) distortion rate (D-R) estima-
tor for SPIHT which generates a nearly exact distortion rate
(D-R) function for 2-D and 3-D SPIHT algorithm is pre-
sented. The analytical formula is derived from the observa-
tions that for any bit-plane coder, the slope of the D-R curve
is constant for each level of the bit plane. Furthermore the
slope of D-R curve reduces by a factor proportional to the
level of the bit plane. An application of the derived results
is presented in the area of 2-D SPIHT transmission employ-
ing a binary symmetric channel (BSC) and Reed Solomon
(RS) forward error correction (FEC) codes. Utilizing our
D-R estimate, we employ unequal error protection (UEP)
and equal error protection (EEP) in order to minimize the
end to end mean square error (MSE) distortion of the trans-
form domain. UEP yields a significant performance gain
relative to EEP only when the average number of parity bits
for a group of packets is constrained. When both the source
rate and channel code rate varied under a bit budget con-
straint, optimal UEP yields only a slight improvement over
the optimal EEP. A major contribution of this paper is the
simple and extremely accurate analytical D-R model which
potentially improves upon pre-existing methodologies and
applications that rely on an accurate and computationaly in-
expensive D-R estimate. Another important contribution is
that the optimum EEP, which requires almost no header in-
formation and can easily be computed using our method, is
only slightly worse than the optimum UEP.

1. INTRODUCTION

Progressive image and video transmission is problematic in
the presence of noisy channels. Progressive source coders
like Image SPIHT and Video SPIHT [1]use a variable length
format where the correct decoding of future bits depend
upon the correct transmission of past bits. Decoding after
the first single bit error can increase the expected distortion
at the receiver and the best strategy is to stop decoding be-
fore the first bit error. We assume that the decoder has the
capability to detect all block errors. Let us denote by����
the mean square error distortion remaining after� bits have

been correctly decoded. Due to the progressive nature of
the source coder bitstream, we stop decoding prior to the
first decoding failure. Since all blocks after an erroneous
block are corrupted due to their dependency on the incor-
rect block, the expected distortion���� depends on the lo-
cation of the first block error. If we successfully decode
all blocks up to and not including block �, the distortion is
denoted by �����. This probability of first block failure

is equal to ������ ���
����
���

�� � ������ ����, where ������ ���

is the probability of losing block � which has a total of �� �
parity bits. So the expected end to end distortion ����
under a bit budget constraint of � equal sized blocks and a
total source rate �� bits is given by:
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(1)

The optimization of Equation (1) forms the objective
function of the joint source channel coding scheme ana-
lyzed in [2, 3] amongst many other papers. It is clear
from Equation (1) that optimal parity allocation across dif-
ferent blocks depends greatly on the D-R characteristics of
the source coder. One method to estimate the D-R curve is
to decode at certain number of points at the receiver and in-
terpolate the D-R function. The drawback to such a method
is that it might not be realizable for a real-time application.
Furthermore such a method is not always accurate because
the points that are decoded may not accurately capture the
slope variation to estimate an accurate D-R function. In [2]
Appadwedula et al. used an exponential model of the form:

��	� �

��

���


��
���� (2)

Where 	 is the 	�	 bit and 
� and �� are parameters for a
specific class of images. The major benefit of using such
models is that they allow Equation (1) to be solved using

IV - 6250-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡



optimization techniques. The drawback of such models is
that they are not particularized to a specific image and video
sequence. Since they are not exact models, a loss in perfor-
mance relative to an exact model is inevitable. This loss in
performance occurs due to the use of the wrong D-R func-
tion in Equation (1) that results in allocating a non-optimum
parity across the transmission blocks. In this paper by an-
alyzing the SPIHT coder and bit plane coders in general,
we offer a more accurate model for image and video coders.
Furthermore by using our D-R estimator, other parametric
models can be fitted more accurately for a particular image
or video sequence.

The discrete two or three dimensional wavelet trans-
forms (DWT) considered here are biorthogonal and sepa-
rable. As a result of having the biorthogonality condition,
the squared norm in the transform domain is not exactly pre-
served, but is very close for the filters we will be using. In
this paper the mean square error (MSE) will refer exclu-
sively to the sum of the square error difference between the
quantized wavelet transform and its lossy approximation di-
vided by a constant �. For images � is the number of
pixels. For image sequences � is the number of pixels per
group of frames(GOF).

2. RATE DISTORTION PROFILE OF SPIHT

Wheeler analyzed the reduction in distortion for each re-
ceived bit. We will expound on that work and then de-
sign an accurate distortion-rate (D-R) curve estimator for
the SPIHT coder. Recall from [1] that at each iteration of
the SPIHT coder, all coefficients that are greater than the
threshold � at that pass and are less than �� are considered
significant by the SPIHT coder. All other transformed co-
efficients which are not significant are deemed insignificant.
Once a significant coefficient is found, its position and ap-
proximate magnitude, which is about one and half times the
threshold level, are inferred from the significance map by
one bit of information and its sign is coded using one ad-
ditional bit of information. So a newly found transformed
coefficient � ��� �� at location ��� �� found to be significant
at a threshold � � �� is assigned a magnitude value of
�� ��� �� � ���� . After a coefficient has been found to be
significant at � , then it is put in a special list for further re-
finement at each subsequent SPIHT pass. Each refinement
pass effectively halves the region of uncertainty relative to
the previous refinement pass.

Initially before any decoding, each coefficient of the im-
age is assumed to be zero. When a coefficient � ��� �� is
found to be significant at � , then a sign bit and a signif-
icance bit is sent. The mean of the lowest frequency sub-
band is also zero, because the image mean is subrtracted be-
fore coding. Assuming that the coefficient is positive and

uniformly distributed between ��� ���, then expected square
error in assuming a zero value for the coefficient is
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If we reproduce the coefficient �� ��� �� � ���� then the
expected squared error becomes
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Finally we consider the case where the coefficient is re-
fined. Given that the coefficient was found to be significant
at � and a 1 is received, the expected distortion is given by
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If 
 refinement bits were received for the ��� �� coeffi-
cient and the coefficient was found at a significance level � ,
the MSE between the two coefficients is

���� ��� ��� �� ��� ����� �
�
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We will keep track of the number of the newly found
significant bits for each pass of the bit plane coder as well as
the total number of bits per each pass. We assume that the
bit plane decoding starts at the level � � �� . Let us denote
by ������� as the number of sign bits in pass � and by
�	������ the number of sign bits decoded in pass �. Note
that ������� is equal to the number of coefficients found
significant at pass �. These quantities are easily generated
by the SPIHT coder at virtually no cost in the computational
complexity of the algorithm.

Since SPIHT finds all the coefficients that are signif-
icant relative to a threshold at each pass, then ������� is
equivalent to the number of transformed coefficients whose
magnitude is greater than or equal to � � and less than ����.
Assuming that we stopped decoding during the sorting pass
of the significance level � � ��, an approximation for
���, denoted by ��� is given implicitly by
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Level Lena Goldhill Barbara

���� ����� ���� ����� ���� �����
12 6241 5905 7671 7638 6615 6482
11 1181 1134 978 1031 1595 1588
10 642 630 511 521 902 896
9 383 380 379 380 641 639
8 237 236 268 267 463 462
7 130 129 177 176 318 315
6 67 67 107 107 155 153
5 33 33 58 57 61 61
4 16 16 26 26 22 22
3 7 7 9 9 8 7

Table 1. Actual and estimated D-R points of coded SPIHT
images at the end of each threshold

Level Flower Garden Mobile Calendar
���� ����� ���� �����

12 13339 14618
11 3126 3066 3119 3164
10 1932 1860 1844 1772
9 1287 1243 1387 1342
8 843 804 921 897
7 487 451 522 511
6 242 220 257 251
5 100 90 102 99
4 34 31 34 31
3 10 9 10 8

Table 2. Actual and estimated D-R points for coded SPIHT
video at the end of each threshold

The first component of Equation (7) takes into account
the reduction of distortion after � � � passes by decoding
all the sign bits found from significance level � all the way
down to significance level ��� and is given by Equation (6)
per sign bit. The second term is a result of the number of
sign bits decoded at the significance level �� The remaining
two terms are the mean square error given by Equation (3)
for not yet found non-zero coefficients. In order to have
�����, we need ������� for every treshold level.

We have calculated some of the estimated ���� values
for threshold levels 12 down to 3 (� � ��� to ��) in Table 1
for three popular images. These results verify that ����� is
a good approximations for the actual���� in all cases. We
have also used the same approximation for 3-D SPIHT [2]
and Table 2 lists the same results obtained for the luminance
Y components of two video sequences. Based on these
results the model we propose for a fast computation of the
SPIHT D-R characteristic is a linear interpolation between
the �����’s at each pass of the SPIHT algorithm.

3. APPLICATION TOWARDS JOINT SOURCE
CHANNEL CODING

Using ����� and Equation (1), we have solved for the op-
timal unequal error protection using a gradient based algo-
rithm. The error correction code we have used are Reed
Solomon (RS) blocks of size 255 bytes denoted by ����� ��,
where the number of information symbols � varies per block.
We have assumed that we are operating over a binary sym-
metric channel with a cross over probability of 0.01. We
have solved the algorithm for different transmission rate
constraints including that of .1089 bpp which equates ex-
actly to a total of 14 RS blocks. In Figure 1 we have plotted
in the transform domain	
��� � �� 	
� ���������������
based on the expected MSE given by Equations(1) for the
UEP and EEP case. At the optimal trade-off point be-
tween the source rate and the channel rate, the UEP perfor-
mance at the transmission rate of .1089 bpp (bits per pixel)
is 0.17 dB better than the best value obtained using EEP.
Only when the average error correction capability per block
is constrained, then UEP yields a significant improvement
over EEP. Figure 1 illustrates that when the source rate
and channel rate are fixed and only the parity allocation per
block is allowed to vary, UEP allows for graceful degrada-
tion when the average number of parity bits per block is re-
duced. In Table 2 and Table 3 we have listed the 	
���
for the optimal UEP and the optimal EEP for the Lena and
Goldhill images at various rates. In these two tables the
entries UEP and EEP signify the optimal UEP and EEP
when the exact D-R function is used and the entries UEP-
����� and EEP- ����� signify the optimal parity allocation
achieved via Equation (7) and subsequently then applied to
Equation (1) with the exact D-R curve. From the table
we observe that the maximum difference between the opti-
mal UEP and the optimal EEP is 0.24 dB and the minimum
difference is .03 dB. Also using ����� to solve for the op-
timal parity allocation is as good as having the actual D-R
function.

Chande and Farvardin [3] used rate compatible convolu-
tional codes and a spatial domain PSNR criterion. They no-
ticed that for any transmission rate, one of their EEP schemes
which is not necessarily the optimal EEP has a small perfor-
mance loss relative to the optimal UEP. Our results not only
confirm this fact, but additionally using our simple D-R es-
timator, we can always obtain the optimal EEP at any rate.
All we have to do is to evaluate Equation (1) via Equation
(7) at several equal code rates and get the maximum value.
The computation cost of this procedure is negligible rela-
tive to any optimization technique that employs procedures
such as gradient based method or dynamic programming.
This leads us to believe that the optimal EEP will be close
to the optimal UEP for a wide range of channel coders and
for both PSNR and MSE distortion measures.
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Rate Normal UEP EEP U ����� E �����

.1089 30.52 29 28.83 29 28.82

.249 33.91 32.44 32.2 32.44 32.2

.498 36.94 35.24 35.01 35.23 35.01

.755 38.49 37.06 36.78 37.05 36.78

Table 3. Expected PSNRT for Lena over a memoryless
BSC with BER 0.01

Rate Normal UEP EEP U ����� E �����

.1089 28.15 27.03 26.97 27.03 26.97

.249 30.34 29.25 29.08 29.25 29.07

.498 32.74 31.51 31.49 31.50 31.48

.755 34.70 32.84 32.70 32.84 32.69

Table 4. Expected PSNRT for Goldhill over a memoryless
BSC with BER 0.01

Despite the slight performance loss, the optimal EEP
has some advantages over the optimal UEP. First, it does
not require any extra header information pertaining to the D-
R estimation for the receiver. For the optimal UEP, there ex-
ist two options for the receiver to have the necessary header
information. Option one is to code and transmit the par-
ity allocation per block. This can potentially be a large
amount of information at high transmission rates. Option
two entails sending the side information that is needed to
calculate ����� at the receiver. This is the number of total
bits and sign bits at the end of each SPIHT pass. Consid-
ering that without the header information the decoding of
the image can not correctly occur, the header information
must be extremely well protected. On the other hand, for
the optimal EEP the receiver just needs to know a single
number that achieves the optimal EEP for a large group of
blocks. The second advantage of the optimal EEP is that it
does not require any optimization techniques like those that
employ gradient based methods or dynamic programming
to obtain the optimal or near optimal UEP. For real time
applications the time delay to run such programs for every
image or video sequence may be intolerable. For systems
with power constraints like mobile phones, the use of an
optimization program for every image or image sequences
could potentially be an important factor for the system de-
signer. Finally the optimal EEP is simpler to implement
since the code rate is the same per each block over a large
group of blocks whereas for an UEP scheme the parity per
each block may vary.

4. CONCLUSION AND DISCUSSION

We have introduced a new method to estimate the D-R char-
acteristics of image and video SPIHT accurately at a very
small computational cost. Our method is shown to be su-

Fig. 1. EEP vs. UEP for Lenna at transmission rate of .1089
bpp

perior to other methods because it is particularized for any
image and video dataset. Although the source coding al-
gorithm used is SPIHT, the D-R estimation method is easily
generalizable to any modern progressive coder that employs
progressive bit-plane coding. The match between the esti-
mated D-R function and the actual D-R function for both
2-D and 3-D SPIHT verifies that our estimate is an excel-
lent approximation. For the optimal UEP we used a gradi-
ent based method to solve for the optimal parity allocation.
For the EEP case we did not need any optimization tech-
nique and evaluating Equation (1) at several points was suf-
ficient to obtain the optimal EEP. The new accurate D-R es-
timation proposed in this paper can bridge the gap between
theory and actual real time implementation of joint source
channel coding for image and video transmission systems.
Finally another major result is that the optimum UEP is only
slightly superior to the optimum EEP. It was also mentioned
that the optimum EEP offers some substantial practical ad-
vantages for real-time applications over the optimum UEP.
The major advantages are simpler implementation, a signif-
icantly smaller header information and independence from
any type of optimization procedure as a consequence of our
fast D-R estimation.
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