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ABSTRACT

Transmitting video streams on channels impairedwith trans-
mission errors is a very demanding task, mainly when im-
ages are predicted from previous ones. In this case, errors on
motion vectors can be very harmful. In order to overcome
this problem, this paper presents a modified H263+ scheme
without motion vector transmission. This is obtained by re-
estimating these motion vectors at the receiver, based on a
properties of frame expansions. This procedure is obtained
at the cost of an increased bit rate, but shows that robust
(and efficient) transmission can indeed be obtained in con-
junction with image prediction.

1. INTRODUCTION

The reliable transmission of video contents through mobile
or mixed internet-mobile channels is a problem of current
interest. The main difficulty comes from the fact that when
the coding efficiency of source coders increases, so does the
sensitivity of the generated bitstream to transmission errors.
Video coders which are robust to transmission errors have
thus to be developed, particularly when no ARQ is feasible.

Several robustification schemes have been proposed. For
example, channel coding can be employed in the context of
satellite television or for systems having a broad bandwidth.
When the constraints in term of bandwidth are stronger,
joint source-channel coding can be an interesting alternative
[1]. Results were obtained mainly with multiple descrip-
tions schemes, by using scalable modes offered by MPEG2
[2] or H263 [3]. Soft decoding of VLC codes taking into
account the structure of the bitstream generated by H263+
have also been considered [4]. However, these techniques
are still very sensitive to motion vectors (MV) transmission
errors.

In this paper, joint source-channel coding is performed
by introducing redundancy in the video sequence to be en-
coded using frame expansion. This redundancy can be re-
alized by imposing some specific property in each picture
of the video sequence. This property has to be partly pre-
served in each picture of the reconstructed video sequence.
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MV transmission is then no more necesary, as they can be
reestimated choosing the ones which enforce the required
property to the reconstructed video sequence (assuming the
texture transmission errors to be corrected).

Frames have found many applications in signal process-
ing and communications. The redundant representation of a
vector or a signal obtained after expansion on a frame makes
it possible, e.g., to improve numerical conditioning at recon-
struction [5] or robustness to quantization noise [6]. More
recently frames have been applied to multiple description
coding of still images, see, e.g. [7]. An analogy between
frames and error correcting codes has been introduced by
[8]. Error correcting algorithms have been proposed in [9]
for frames of Rk and Ck and in [10] for frames of �2 (Z).

Here, only frames of R
k are considered, as they are

adapted for the expansion of real valued images. The frame
expansion must have good interpolation properties in or-
der to preserve satisfying source coder performances. BCH
frames, i.e., frames corresponding to BCH codes on the re-
als [11] satisfy these two constraints. Joint source-channel
coding using frame expansion with BCH frames will be
presented in Section 2. Section 3 introduces the modified
H263+ codec including frame expansion and MV reestima-
tion using the redundancy introduced by the frame expan-
sion. An example is presented in Section 4.

2. JOINT SOURCE-CHANNEL CODING USING
THE FRAME EXPANSION

In this paper, some properties of frames of Rk will be briefly
recalled. For more details, see [5] or [12].

A set Φ = {ϕm}
n

m=1 ⊂ Rk of n ≥ k vectors of Rk is a
frame of Rk, if there exits A > 0 and B < +∞ such that

A ‖x‖2 ≤
n∑

k=1

|〈x, ϕk〉|
2 ≤ B ‖x‖2 for all x ∈ R

k.

A frame Φ is tight if A = B, it is uniform if ‖ϕm‖ = 1
for all m = 1, . . . , n. Finally, a Parseval frame is such that
A = B = 1 [13].

The linear operator F associated with the analysis frame
expands vectors of R

k into vectors of R
n, as (Fx)i = 〈ϕi,x〉.
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F is an n× k matrix whose rows are the transposed vectors
of Φ. The expansion on a frame being a redundant repre-
sentation, the operator associated with the synthesis frame
is not unique [14]. An example of a synthesis frame is the
pseudo-inverse F

p =
(
F

H
F

)−1
F

H of F.

2.1. Analogy between frames and error correcting codes

In this part, largely inspired from [8], a Parseval frame oper-
ator F(n,k) is considered. It transforms a vector x(k) ∈ Rk

into a vector c(n) ∈ Rn. The singular value decomposition
of F(n,k) can be written as

F(n,k) = U(n)

(
I(k,k)

0(n−k,k)

)
V(k), (1)

where U(n) and V(k) are two unitary matrices ; I(k,k) and
0(n−k,k) are respectively the identity and null matrix. This
decomposition evidences the redundancy introduced by the
expansion. Let x̃(k) = V(k)x(k) and

c̃(n) =

(
I(k,k)

0(n−k,k)

)
x̃(k) =

(
V(k)x(k)

0(n−k)

)
.

Thus c̃(n) is obtained by inserting n − k zeros to x̃(k) and
c(n) = U(n)c̃(n) belongs to a subspace of dimension k of
R

n. The n − k inserted zeros form a syndrome, which can
be evaluated using a parity check matrix H(n−k,n) defined
as

U
−1
(n) =

(
H

′

(k,n)

H(n−k,n)

)
.

When no transmission errors corrupts c(n), the syndrome
calculated from the received vector r(n)

s(n−k) = H(n−k,n)r(n) (2)

is null. This is no more the case when c(n) is corrupted by
(quantization) noise.

2.2. Frames and BCH codes on the real field

The family of BCH(n, k) codes on reals [11] constitutes a
particular class of frame of Rk. The principle of BCH codes
on the reals can be viewed as inserting zeros in the spectrum
of the code word on a set A of n − k frequencies between
0 and n − 1. Let δA (i) be the indicator function of A,
δA (i) = 1 if i ∈ A and δA (i) = 0 else. The BCH encoding
transforms an information word x(k) ∈ Rk into a code word
c(n) ∈ Rn as

c(n) = W(n)P(n,k)W
−1
(k)x(k) = F

BCH
(n,k)x(k), (3)

where W(k) and W(n) are the unitary matrices (for exam-
ple associated with Fourier transform, discrete cosine trans-
form, ...) and P(n,k) is a matrix of zeros padding with

(
P(n,k)

)
�, m

= 1 if δA (�) = 0 and m =
∑�

j=0 δ
A

(j) − 1

and
(
P(n,k)

)
�, m

= 0 in the other cases.
Using Naimark’s theorem [15], it is possible to show

that the operator F
BCH
(n,k) associated with BCH codes on the

reals is a Parseval frame operator. Such frames will be
called BCH frames.

The syndrome and parity-checkmatrices of BCH frames
are

s(n−k)

(
r(n)

)
= R(n−k,n)

(
W(n)

)−1
r(n) = H(n−k,n)r(n),

with
(
R(n−k,n)

)
�,m

= 1 if δA (m) = 1 and m = � +∑m

j=0 δ
A

(j) and
(
R(n−k,n)

)
�,m

= 0 in the other cases.
Two type of BCH frames will be considered. Frames

based on the Fourier transform F
BCH-F
(n,k) are such that W(k)

and W(n) are Fourier transform matrices of dimension k

and n. Obtaining real code words c(n) from real informa-
tion words c(k) requires thus that A satisfies

if f ∈ A then n − f ∈ A.

For frames based on the discrete cosine transform F
BCH-D
(n,k) ,

this condition vanishes as W(k) and W(n) are real discrete
cosine transform matrices of dimension k and n.

2.3. Product expansions

Images are stored as real valued matrices, thus the redun-
dancy has to be introduced by a product frame expansion of
blocks X(k,k) of size k×k of the images of the initial video
sequence to get expanded blocks of size n × n evaluated as

C(n,n) = F
BCH
(n,k)X(k,k)

(
F

BCH
(n,k)

)T
. (4)

The inverse transformation is obtained by a synthesis on the
rows followed by a synthesis on the columns.

X̂(k,k) =
(
F

BCH
(n,k)

)p
C(n,n)

((
F

BCH
(n,k)

)p)T
, (5)

where the pseudo-inverse
(
F

BCH
(n,k)

)p
of F

BCH
(n,k) is

(
F

BCH
(n,k)

)p
= W

BCH
(k)

(
P

BCH
(n,k)

)T (
W

BCH
(n)

)−1

.

The syndrome can then be defined as

S(n,n)

(
C(n,n)

)
= W

−1
(n)C(n,n)(W

−1
(n))

T

−
(
F

BCH
(n,k)

)p
C(n,n)

((
F

BCH
(n,k)

)p)T
(6)

and contains n×n− k× k non-zero elements when C(n,n)

is corrupted by some transmission errors.
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3. MODIFIED H263+ ENCODER SCHEMES

Figure 1 presents a modified H263+ coding scheme incor-
porating a BCH frame expansion. The BCH and IBCH
blocks correspond respectively to the expansion and syn-
thesis on a BCH product frame according to (4) and (5).

DCT

IDCT

Motion

estimation /

compensation

+

+ Q

IQ

Video

stream

Channel

IQ IDCT +

Motion vector

correction /

reestimation

Reconstructed

video stream

Channel

IBCH

BCH

BCH

IBCH

BCH

Texture

Motion

vectors

Texture

Motion

vectors

+

-

Fig. 1. H263+ codec integrating a BCH frame expansion

It is assumed in the remainder of this paper that all trans-
mission errors affecting the texture have been correctedand
that no MV have been sent to the modifier H263+ decoder.
MV reestimation has then to be realized.

Consider a macroblock M(n,n). At encoder side, the
motion compensation (MC) consists in finding the MV m̂ =
(mx, my)T that minimizes, e.g. JMC (m), which is, the
Frobenius norm

JMC (m) =
∥∥T(n,n) (m)

∥∥
F

=

√ ∑
1�i,j�n

|ti,j (m)|
2 (7)

of the texture

T(n,n) (m) = M(n,n) − X(n,n) (m) . (8)

X(n,n) (m) is a block of size n × n extracted from some
search area N(�,�) of the previously rebuilt image. The lo-
cation of X(n,n) (m) is deduced from that of M(n,n) by a
translation of m.

Assume that T̃(n,n) (m̂) results from the quantization of

T(n,n) (m̂). At decoder side, T̃(n,n) (m̂) is transmitted and
N(�,�) is taken from the previously rebuilt image. To rees-
timate m̂, the property that the reconstructed macroblock
M̂(n,n) is an estimate of M(n,n) which results from the ex-
pansion on a BCH frame is put at work. The first idea that

comes to mind is to build an estimate m̂BCH of m̂ by mini-
mizing the criterion

JBCH

(
m, T̃(n,n) (m̂)

)
=∥∥∥S(n,n)

(
T̃(n,n) (m̂) + X(n,n) (m)

)∥∥∥
F
.(9)

However, there is no guarantee that m̂ is the argument of
the global minimum of JBCH (m). Without quantization er-
ror, m̂ is one of the arguments of the global minimum of
JBCH (m), but it is not necessarily unique. To improve the
robustness of the MV reestimation, the classical MC has
to be replaced by a robust MC which has to ensure at the
encoder side that the transmitted MV will be reestimated
without error.

A list L = {m1,m2, . . . ,mN} of MV is generated by
the standard H263+ MC satisfying

JMC (m1) � JMC (m2) � · · · � JMC (mN ) .

T(n,n) (m1) and m1 are then transmitted. The robust MC
has to transmit mk and T(n,n)

(
mk

)
where

k = min
{
k | mk = argmin

m

JBCH

(
m, T̃(n,n) (mk)

)}
,

when such k exists. If all texture transmission errors are
corrected, the correct reestimation of mk by minimizing (9)
at decoder side is ensured at encoder side. When no k can be
obtained, m1 and T(n,n) (m1) may be transmitted, without
guarantee that m1 can be correctly reestimated.

The IBCH block at decoder side may correct some high
amplitude quantization errors as in [16]. It is followed by a
BCH block to obtain again images serving as references for
MC. The same decoder has to be present at encoder side in
order to prevent drift.

Remark 1 This technique could also be put at work for de-
tection and correction of erroneously transmitted MV. At
decoder side, without quantization and transmission error,
all reconstructed macroblocks should possess a null syn-
drome matrix (6). However, the texture quantization in-
troduces noise variance the variance of which can be esti-
mated. The syndrome matrix is no more null, and it is possi-
ble to calculate the probability distribution of its Frobenius
norm of the syndrome under the two hypotheses that there
has been no MV transmission error (H0) and there has been
MV transmission errors (H1).An hypothesis test can then
be derived to detect transmission errors corrupting a given
macroblock. MV correction is then done by simple reesti-
mation of the errorneous MV.

4. EXAMPLE

The modified H263+ scheme is tested on the first 101 lu-
minance frames of the video sequence foreman. The MC is
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realized with a 1 pixel accuracy. The first frame is INTRA
coded, all the others are INTER coded. Two BCH frames
have been put at work : a Fourier-based BCH frame F

BCH-F
(16,15)

with A = {8} and a DCT-based BCH frame F
BCH-D
(16,15) with

A = {4}. For F
BCH-D
(16,15), the set A has been optimized to

obtain the best coding and MV reestimation performances.
The quantization parameter QP adjusts the quality of com-
pressed video flow. Before expansion, the original images
were supplemented by symmetry so that their dimensions
are multiple of 15. Table 1 presents the results of the mod-
ified H263+ coder incorporation the robust MC, so that no
MV is transmitted.

QP 16 24
H263+ bit stream size 118 kB 69kB

PSNR 32.2 29.9
bit stream size 261 kB 181kB

F
BCH-F
(16,15) variation (%) 122 162

A = {8} MV prop. (%) 3.64 5.18
PSNR 31.6 29

bit stream size 216 kB 136kB
F

BCH-D
(16,15) variation (%) 84 97

A = {4} MV prop. (%) 3.13 4.72
PSNR 31.1 28.6

Table 1. Performances of the original H263+ and BCH-
frame H263+ video schemes

With both schemes, it a possible to obtain a satisfying
quality without transmission of the MV. The increase of the
size of the bitstream is due to three factors. (i) For the ro-
bust schemes, the size of the pictures to encode has been
enlarged before expansion, in order to get dimensions that
are multiple of 15. (ii) Redundancy has been introduced due
to the expansion. (iii) Finally, the MC is less efficient than in
the original H263+ scheme, as only MV that are guaranteed
to be reestimated by the minimization of (9) are considered.
Textures have thus higher variances and the size of the bit-
stream increases consequently. Table 1 also shows that for
the considered QP , the proportion occupied by the MV is
marginal and their removal form the bitstream results only
in a partial compensation for the redundancy introduced by
the expansion.

5. CONCLUSIONS

In this paper, we showed that using BCH frame expansion
of video sequences, it is possible to avoid the transmission
of MV generated by video coding schemes such as H263+.
The principle is to use the fact that the reconstructed im-
ages have to satisfy the constraint introduced by the frame
expansion at encoder side.

The performances are reasonable compared to an H263+

scheme where MV are transmitted. Further research is be-
ing undertaken in order to combine the results presented
with techniques such as soft VLC decoding by taking into
account source semantics [4] in order to get a reliable esti-
mate of the textures. This technique could also be combined
with video encoders based on 2D+t wavelets expansions, in
order again to avoid transmission of MV.
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