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ABSTRACT

This paper studies the rate-distortion performance of symmetric
scalar quantizers having a large (effectively infinite) number of
steps and using the same step size for all steps except the one
containing the zero input value. Quantizers of this form have
been shown to have good performance for a variety of sources,
and are precisely optimal for the Laplacian source. Performance
is particularly investigated for embedded quantization, in which
the representation of a source quantity is refined successively by
forming finer quantizers from further segmenting the steps of
coarser quantizer constructions. Although the use of a double-
wide dead-zone has dominated prior embedded quantization
practice, it is shown that any rational number can be maintained
as a stable dead-zone ratio. Two forms are investigated in more
depth — quantizers with dead-zone ratios of 1 and 2, and a ratio
of 1 is shown to often provide a significant performance
advantage (up to 1 dB). Performance is explored primarily in
the context of the generalized Gaussian pdf using the squared-
error distortion measure, but should also apply in other contexts.

1. INTRODUCTION

This paper studies the rate-distortion performance of symmetric
scalar quantizers having a large (effectively infinite) number of
steps and using the same step size for all steps except the one
containing the zero input value. Quantizers of this form have
been shown to have good performance for a variety of sources,
and are precisely optimal for the Laplacian source. Performance
is particularly investigated for applications using embedded
quantization, in which the representation of a source quantity is
refined successively by forming finer quantizers from further
segmenting the steps of coarser quantizer constructions.

While embedded quantization (e.g., as used in the JPEG
standards) has been typically formed by using a double-wide
dead-zone and dividing the non-zero steps of such a quantizer by
two in each embedded refinement stage, this paper describes and
analyzes a more general form of such embedded quantizer
constructions. It is shown herein that any rational number can
be maintained as a stable ratio between the size of the embedded
quantizer dead-zone and the size of the remaining steps. Two
forms are investigated in more depth — quantizers with dead-
zone ratios of 1 and 2, and a ratio of 1 is shown to often provide
a significant performance advantage. Quantizers using optimal,
single-offset, and mid-point reconstruction rules are investigated.
Performance is explored primarily in the context of the
generalized Gaussian source pdf using the squared-error
distortion measure, but should also apply in other contexts.
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2. SCALAR QUANTIZATION ANALYSIS

2.1. Scalar quantization

Define a scalar quantizer as an approximating functional
mapping x > Q[x] that can be decomposed into two distinct
stages, the first being a classifier functional mapping x 2> A[x]
that maps a real-valued input variable x to an integer-valued
quantization index A[x], and the second being a reconstructor
functional mapping k = (k] that maps each quantization index
k to a real-valued reconstruction value p[k], so that
O[x] = flA[x]]. Define the distortion introduced by such a
quantizer using a difference-based distortion measure d(x—Q[x]).
A quantizer is considered better in the rate-distortion sense for a
source random variable X if the expected value of the distortion
measure D = Ey{d(X-Q[X])} is lower for an equal or lower
entropy H of A[X].

2.2. The DZ+UTQ

Define a dead-zone quantizer with uniform threshold values for
all steps except the one containing the zero input value, denoted
here as a DZ+UTQ (dead-zone plus uniform threshold
quantizer), as a quantizer having an index mapping rule 4[x] that
is based on two parameters: s > 0 (the step size for all steps other
than the zero-input dead-zone region) and z > 0 (the ratio of the
dead-zone size to the size of the other steps), as follows:

|x|_z

A[x] = sign(x) * max[O, L% 3 + ID (1)

where the notation |_J denotes the smallest integer less than or

equal to the argument. The case with z =1 is referred to as a
uniform threshold quantizer (UTQ). Quantizers of the UTQ
form have good performance for a variety of sources [1], and the
DZ+UTQ form is optimal for the Laplacian source [2].

2.3. Optimal reconstruction

Assuming that the source pdf f{x) is symmetric about zero, the
optimal reconstruction rule for a symmetric difference-based
distortion measure d(|x—y|) is given by [3][4]:
zs
min”! [2[d(x=y)+d(y—x)] f()ds. k=0,
Blk] = " @
+K| S
sign(k) min”" 2 d(|x-=y]|) f(x)dx, k=0.
y ——+(k-Ds
We assume herein (as would be the case for optimal
reconstruction for typical source pdfs and typical distortion
measures) that f[0] = 0. One common distortion measure is the
squared-error measure d(jx—|) = x—, for which the optimal
reconstruction rule uses the conditional mean in each region.
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2.4. Single-offset reconstruction

A second form of reconstruction rule will also be discussed here.
We call this a single-offset reconstruction rule. It is based on an
offset parameter A (where ordinarily 0 <A <s/2), as follows:

0, for k=0,

Plk] = 3

sign(k) m k| +§-1) s+ A} for k #0.

A special case of the single-offset reconstruction rule is the
mid-point reconstruction rule, specified by A =s /2. Mid-point
reconstruction is commonly used for convenience, and in the
limit as s becomes small, the performance of the mid-point rule
becomes optimal under a variety of well-behaved conditions [5].

2.5. Embedded quantization

Define an embedded quantizer design (also known as a
progressive quantizer design) for a DZ+UTQ as an indexed
sequence of quantizer mappings { O], =0, ... } such that as i
increases, each quantization index mapping function A;[x] is
formed by further segmentation of the regions formed by the
classifier A;i[x]. Embedded quantizers can enable bitstream
scalability, in which a subset of the (entropy-coded) data used to
specify a fine representation of the source can be used to obtain a
suitable coarser representation. When using an embedded
quantizer design, the representation of the source data can be
sent in multiple stages, where in each stage the expected quantity
of information necessary to be transmitted is the difference in
entropy H—H.; of the mapping functions for the two stages.

If Q4[] and Qj[‘] are both DZ+UTQs, this implies that
each non-dead-zone step of Q;[] is divided into non-dead-zone
steps of Qj[], so there is some integer m; > 0 such that

s;p =5/ (m; +1), (4)
and the dead-zone of Q,[] is divided into a next dead-zone for
Oi‘] plus some other steps to each side of zero, so that there is
some integer 7; such that 0 < »; < (m;+1) z;; / 2 for which

Zi4Si —2ms; =z;8; (%)
resulting in
z,, =(z; +2n;,)/ (m; +1) . 6)

We define the dead-zone ratio to be stable if z;=z,.
Solving Eq. (6) in this case, we obtain the following relation for
a stable dead-zone ratio Z (where the hat denotes stability):

z=2n/m. @)

Thus the use of the same m > 0 and n > 0 for every stage
can enable maintaining a stable dead-zone ratio of Z for all i > 0.
Eq. (7) shows that any rational number can be achieved as a
stable dead-zone ratio by appropriate selection of m and n. This
counters a misconception that the author has sometimes
encountered in discussions — the belief that z =2 (using m and n
equal to 1) is the only possible stable dead-zone ratio. In fact an
infinite number of alternatives exist.

Starting with any dead-zone ratio z;, if the value of m;> 0
and n; > 0 are held constant for multiple values of i, the result of
J 2 0 iterations of Eq. (6) is the relationship

7 =2+(z; =)/ (m+1) . (3)

This shows that when the same value of m and » are used
for multiple stages of embedded quantization, regardless of the

dead-zone ratio z; used at some high bit rate, the dead-zone ratio
rapidly approaches z as j is increased (i.e., at the earlier, lower
bit-rate stages of the embedded quantization design). Thus the
dead-zone ratio can only differ substantially from Z in the final
refinement stages of the embedded quantizer operation.

The embedded quantization designs of the JPEG-1992 and
JPEG-2000 standards and the still texture object and fine-
granularity scalability features of MPEG-4 part 2 are based on
designs using z = 2. The use of z =2 or more has also been
implicit in a number of non-embedded encoding designs. For
example, the spacing of the reconstruction values for predicted
regions in the H.261, MPEG-1, MPEG-2, H.263, and MPEG-4
part 2 video coding standards reflects an intent for use of zZ > 2,
as the reconstruction levels are spaced appropriately for mid-
point reconstruction with z = 2 (and altering the decision
thresholds to increase optimality for the specified reconstruction
values results in the use of an even larger dead-zone ratio).

However, designs based on z=1 (or at least Z <2) are used
for the non-embedded form of JPEG-1992; intra DC coefficients
in H.261 and H.263; intra DC and AC in MPEG-1, MPEG-2 and
H.263 Annex I; all intra DC and some intra AC in MPEG-4 part
2; and all coefficients in H.264/AVC. In these specifications, the
reconstruction values are equally spaced around zero and away
from zero, so mid-point reconstruction would imply the use of
z =1 (and widening the dead-zone to z > 2 for the same
reconstruction values would place the non-zero reconstruction
values outside of their corresponding classification regions,
which would be a very obviously suboptimal quantizer design).

Note that the above standards do not fully specify the
quantizer design — each of them allows some variation in the
encoder classification rule A[-] and/or the decoder reconstruction
rule A[-]. In fact, in some cases, some parts of these rules are not
specified in the standard at all and in others the method provided
may not really be intended to represent good practice. (For
example, JPEG-1992 provides an embedded reconstruction rule
that is effectively a single-offset rule in which A does not change
with #, which is a rather poor rule approaching or exceeding 6 dB
of suboptimality at some rates if i becomes large.)

In practice, we believe that designs using small values of m
are the most likely to be of interest for applications, as these
provide finer granularity in the bit rates produced by consecutive
stages of embedded quantization. We also expect relatively
small values of n to be the most typically useful, since large
dead-zone ratios appear difficult to justify in rate-distortion
analysis for most sources. We therefore focus on the cases z =2
(resulting from m =1 and » =1) and z =1 (an embedded UTQ
construction resulting from m=2 and n=1). The case with z=0,
sometimes called a mid-rise quantizer, is not considered here due
to its inability to produce bit rates below 1 bit per sample.

3. THE GENERALIZED GAUSSIAN SOURCE

The generalized Gaussian source pdfis given by

v [nv) )]
21"(1/\/){ p }XP{{ - |x|} } ®

where o is the standard deviation, v is a shape parameter, and

n(v)=4T@/v)/TA/v) . (10)

The Laplacian and Gaussian pdfs are special cases of the
generalized Gaussian pdf with v=1 and v =2, respectively.

Jog(x)=

IV - 606



Members of the generalized Gaussian pdf family with v in
the range of 0.5 to 2 have frequently been used as a model for
compression applications  [1][2][3][6][7][8]1[9][10][11][12],
particularly including transform-based image and video
compression. It is common practice, for example, for the
Laplacian source model to be used for the values of non-DC
transform coefficients [6][7][8][11] and for the Gaussian source
model to be used for the values of DC coefficients [7][8] for
image and video coding. Recent theoretical analysis has
provided a rationale for this use of the Laplacian model [12].

4. THE LAPLACIAN SOURCE

For the special case of the Laplacian source (a generalized
Gaussian source with v = 1), the quantizer performance can be
computed analytically, following the method described in [2].
The Laplacian source pdf is given by
1 —| x| \/5 /o
i) =—ze T

o

Defining o= sﬁ/a , the DZ+UTQ entropy is then

()

H, =B+ e’”‘/z[l +B(e®)/(1- e*“)] bits, (12)
where the function B(p) for 0 <p <1 is given by
B(p) =—plog,(p) = (1= p)log,(1-p), (13)
and the expected distortion for single-offset reconstruction is

2
D, :%[7/(205/2,0) +r(a,8) e/ —e'“)], (14)

where

y(a,b) = Lad(|x—b e “dx , (15)

and 0 = A\E /o . For the squared-error distortion measure,
y(a,b)=(b* -2b+2)(1—-e“)—ae “(a-2b+2), (16)
and the optimal reconstruction rule is a single-offset rule with
S=l-ae®/(1-e). 17)
For mid-point reconstruction, 6= &/ 2. Note that the value
of & for optimal reconstruction approaches « / 2 as s (and

therefore ) approaches zero, confirming that mid-point
reconstruction is asymptotically optimal when s is small.

5. QUANTIZER PERFORMANCE

5.1. The Laplacian source

Fig. 1 shows the gain in performance for the use of a quantizer
with a dead-zone ratio z= 1 versus z =2 when using the squared-
error distortion measure and either the optimal reconstruction or
mid-point  reconstruction rule. When using optimal
reconstruction, a DZ+UTQ with z = 1 always provides equal or
better performance than z = 2, and provides a performance
improvement up to 0.8 dB, although z = 2 appears to dominate
current usage practice. When using mid-point reconstruction,
although at higher rates a similar amount of performance
improvement can be obtained by using z = 1 rather than z = 2
with mid-point reconstruction as well, there is a region of bit
rates below 2 bits per sample in which the performance of
DZ+UTQ with z=1 is inferior to that with z=2. This is due to
the significant degree of suboptimality of the mid-point
reconstruction rule for the case of z= 1, as shown by Fig. 2.
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Fig. 1 — Benefit foruse of z=1 vs. z=2 with v=1.

Fig. 2 shows the loss in performance for the use of mid-
point reconstruction rather than optimal reconstruction for dead-
zone ratios of z =1 and z = 2. Mid-point reconstruction is
significantly suboptimal for z = 1, causing a performance loss of
as much as 0.83 dB at around 0.75 bits per sample, while the
penalty diminishes at higher rates. For z = 2, mid-point
reconstruction is not as harmful, causing a maximum
performance penalty of only about 0.08 dB. It can therefore be
concluded that the region of performance loss for z=1 relative to
z =2 with mid-point reconstruction as shown in Fig. 1 is due to
the suboptimality of mid-point reconstruction for z= 1.
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Fig. 2 — Penalty of mid-point vs. optimal rule with v=1.

5.2. The Gaussian source

Figs. 3 & 4 correspond to Figs. 1 & 2 for the Gaussian source.
Although the amount of performance difference for the Gaussian
source varies somewhat from that shown for the Laplacian
source, the nature of the performance differences are similar.

5.3. The generalized Gaussian source with v=0.5

Figs. 5 & 6 correspond to Figs. 1 & 2 for the generalized
Gaussian source with v = 0.5. Here a somewhat different
behavior can be seen. When v is 0.5 there is a region with a
(relatively minor) performance loss (up to about 0.13 dB) for
z=1 relative to z =2, even when optimal reconstruction is used.
Such a region was not found for the Laplacian or Gaussian cases.
The performance characteristics are otherwise roughly similar in
nature for v=0.5 as for the other two plotted cases.
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Fig. 3 — Benefit for use of z=1 vs. z=2 with v=2.

Fig. 5 — Benefit for use of z=1 vs. z=2 with v=0.5.
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Fig. 4 — Penalty of mid-point vs. optimal rule with v=2.

6. CONCLUSIONS

We have investigated the rate-distortion performance of
DZ+UTQ designs, and have shown that any rational number can
be achieved as a stable dead-zone ratio for an embedded
quantization design. We have further shown that a significant
performance benefit (up to 1 dB) can often be obtained by using
a dead-zone ratio of 1 rather than the ratio 2 that appears to be
more prevalent in prior embedded quantization use.
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