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ABSTRACT

Recently, lattice vector quantizers (LVQ) capable of performing

close to known information theoretic bounds were introduced in
the area of multiple description coding (MDC). In this paper we

derive analytical expressions for the central and side quantizers

which minimize the expected distortion of an LVQ subject to en-

tropy constraints on the side descriptions for given packet loss
probabilities. We show that for certain packet loss probabilities,

an optimal LVQ for single descriptions might not be optimal for

multiple descriptions. Specifically, we show that the Z2 lattice

performs better than the A2 lattice in some cases. Moreover, our
results suggest a practical way of determining which lattice quan-

tizers are optimal for given packet loss probabilities.

1. INTRODUCTION

Multiple description coding (MDC) aims at creating separate de-

scriptions individually capable of reproducing a source to a speci-
fied accuracy and when combined being able to refine each other.

The classical scheme involves two descriptions, see Fig. 1. The

total rate is split between the two descriptions, and the distortion

observed at the receiver depends on which descriptions arrive. If

both descriptions are received, the distortion is lower than if only
a single description is received.

The achievable rate-distortion region for the two-channel prob-

lem with respect to the Gaussian source and mean square error

fidelity criterion has been known for two decades [1, 2]. The
procedures leading to the achievable region were however non-

constructive, so the puzzle of designing a system capable of achiev-

ing the performance promised by theory remained unsolved. In

1993 Vaishampayan designed a practical MDC scheme for the
scalar case [3]. The idea was to quantize the source by a cen-

tral quantizer and then apply an index assignment algorithm that

uniquely mapped all centroids of the central quantizer to centroids

in two side quantizers, thereby obtaining two coarse descriptions
of the source. If both descriptions were received, the inverse map

was applied and the performance of the central quantizer was achie-

ved, whereas if only one of the descriptions was received the source

was reproduced at the resolution of only one of the side quantiz-
ers. The scheme developed in [3] was, however, far from the op-

timum rate-distortion bound. Later, Vaishampayan described an
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Fig. 1. The traditional two channel MDC scheme.

entropy constrained multiple description scalar quantization sys-

tem [4] that in theory is capable of approaching the scalar MDC

bound [5].

Recently, practical schemes that in the limit of infinite-dimen-
sional vectors approach the theoretical rate-distortion bound have

been introduced [6, 7]. Similar to [3, 4], these schemes exploit

the idea of having only one central quantizer followed by an index

assignment algorithm that maps each central quantizer centroid to
pairs of side quantizer centroids. The scheme in [7] minimizes

the central distortion given maximum allowed side distortions and

side rates.

In this paper we derive analytical expressions for the central

and side quantizers which minimize the expected distortion of an
LVQ subject to entropy constraints on the side descriptions for

given packet loss probabilities. The central and side quantizers

we use are lattice quantizers as presented in [7].

2. PRELIMINARIES

The preliminaries given in this section follow directly from [7] and

we refer the reader to the cited article for further details and proofs.

Let X ∈ RL be a random vector and let x ∈ RL denote a
realization of X. Moreover, let Λ be an L-dimensional lattice in

RL. The Voronoi cells around lattice points are congruent poly-

topes of volume ν and the normalized second moment of inertia of

the Voronoi cell around origo is defined as

G(Λ) � 1

ν2/L+1

Z
VΛ(0)

‖x‖2dx,

where VΛ(0) is the Voronoi cell around origo [8].
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The scheme in [7] uses an index assignment algorithm which

uniquely maps all points in the central lattice (central quantizer)

to pairs of points in two sublattices (side quantizers). The con-
struction of the mapping function exploits structural properties of

the lattices, making it possible to only search for the optimal map-

ping within a limited region, V0, of the lattices. V0 is shift invariant

and by simply translating the mappings obtained within this region
throughout RL, all the required mappings are found. The region

V0 is in fact the Voronoi region around origo for a product lattice,

Λs, obtained when the two sublattices are combined. This prod-

uct lattice is a scaled and rotated version of the sublattices but the
shape is similar and the high-rate expressions for the side distor-

tions in this section are based on properties of this product lattice.

The central (mean-square error) distortion obtained when both

descriptions are correctly received is due to quantizing the source
X using the lattice Λ and can, under a high-rate assumption, be

approximated by

d0 ≈ G(Λ)ν2/L. (1)

The side distortions, d1 and d2, arising when one of the descrip-
tions is lost, can be expressed as

di ≈ γ2
j

(γ1 + γ2)2
G(Λs)2

2h(X)2−2(R1+R2−R0), (2)

where (i, j) = (1, 2) or (2, 1) and G(Λs) is the normalized second

moment of the sublattices. The weight factors γ1 and γ2 are intro-

duced to allow asymmetry in the distortion pair (d1, d2). h(X)
is the differential entropy of the source X and R0 is the entropy

needed for a single description system to achieve the distortion in

(1) and can, under a high-rate assumption, be approximated by

R0 ≈ h(X) − 1

L
log2(ν).

R1 and R2 are the entropies of the two side descriptions. These

are expressed in bits per sample and given by

Ri = R0 − 1

L
log2(Ni), i = 1, 2,

where Ni is the index of the ith sublattice and may be seen as a

redundancy factor describing the rate trade-off between central and

side quantizers. In fact, Ni denotes the number of central lattice
points within each Voronoi cell of the sublattices.

3. MINIMIZING AVERAGE DISTORTION

Let p1 and p2 denote the packet loss probabilities of description 1

and 2, respectively. The average distortion given p1 and p2 is then
given by

D = γ0d0 + γ1d1 + γ2d2 + γE[‖X‖2], (3)

where we define γ0 = (1 − p1)(1 − p2), γ1 = (1 − p1)p2,

γ2 = (1 − p2)p1 and γ = p1p2. We assume that p1 and p2

are independent.
We want to minimize the average distortion subject to entropy

constraints on the two side descriptions,

Ri ≈ h(X) − 1

L
log2(Niν) ≤ R∗

i , i = 1, 2, (4)

where R∗
i are the entropy constraints. It follows immediately from

(4) that in order to be optimal, i.e. achieve equality in (4), we must

have

Niν = 2L(h(X)−R∗
i ) = ci, i = 1, 2, (5)

where the ci’s are constants for given target and differential en-

tropies, so that

ν =
c1

N1
=

c2

N2
, (6)

and
N1N2 =

c1c2

v2
. (7)

With this, the average distortion (3) becomes

D = γ0G(Λ)ν2/L +(γ̄1 + γ̄2)G(Λs)(N1N2)
2/Lν2/L + γ, (8)

where we, without loss of generality, assume X to be normalized

to unit variance. The weight factors γ̄i are given by

γ̄i = γi
γ2

j

(γ1 + γ2)2
, (9)

where (i, j) = (1, 2) or (2, 1).

To minimize (8) we take the derivative with respect to ν and

solve the expression after equating to zero, that is,

∂D

∂ν
=

2

L
γ0G(Λ)ν2/L−1

− 2

L
(γ̄1 + γ̄2)G(Λs)(c1c2)

2/Lν−2/L−1 = 0.

(10)

Hence,

ν =

„
G(Λs)

G(Λ)

«L/4 „
γ̄1 + γ̄2

γ0

«L/4 √
c1c2

=
√

c1c2

„
G(Λs)

G(Λ)

«L/4 „
p1p2

p1 + p2 − 2p1p2

«L/4

, (11)

so that, by (6), the individual index values are given by

Ni =

r
ci

cj

„
G(Λ)

G(Λs)

«L/4 „
p1 + p2 − 2p1p2

p1p2

«L/4

. (12)

For the balanced case where the entropy constraints are equal,

that is, c2 = c1c2 and equal packet loss probabilities p1 = p2 = p,

we get

ν = c

„
G(Λs)

G(Λ)

«L/4 „
p

2(1 − p)

«L/4

. (13)

In this case, the index values will be equal as well and (12) reduces

to

N =

„
G(Λ)

G(Λs)

«L/4 „
2(1 − p)

p

«L/4

. (14)

Eqs. (11) and (12) (and (13) and (14) for the balanced case) show,

for given p1 and p2, how to compute the optimal ν and Ni which

completely characterize the central and side quantizers.

4. ADMISSIBLE VALUES OF NI

Eqs. (13) and (14) suggest that we are able to continuously trade-

off central versus side-distortion by adjusting Ni and ν according

to the packet loss probability. This is, however, not the case, since

certain constraints must be put on Ni to make sure that we obtain
proper sublattices [7]. First of all, since Ni denotes the number

of central lattice points within each Voronoi cell of the sublattices,

it must be integer. Secondly, a proper sublattice is for example a

sublattice which is geometrical similar to the central lattice, i.e. it

IV - 602

➡ ➡



Name Dim. Ni

Z 1 1,3,5,7,9,. . .

Z2 2 1,5,9,13,17,25,29,37,41,45,49,. . .
A2 2 1,7,13,19,31,37,43,49,. . .

D4 4 1,25,49,169,289,625,. . .

Z4 4 1,25,49,81,121,169,225,289,361,. . .

Table 1. Index values that give geometrical similar and clean sub-

lattices for different central lattices in one, two and four dimen-

sions.

can be obtained from the central lattice by applying a change of

scale, a rotation and possibly a reflection. The normalized second

moment is independent of scaling, rotation and reflection [8], so

by using sublattices which are geometrical similar to the central
lattice, the ratio of the normalized second moments is equal to one.

For any proper sublattice, a number of central lattice points

will be located within each Voronoi cell of sublattice points and
perhaps on the boundaries between neighboring Voronoi cells. To

obtain an injective mapping from central lattice points to sublattice

points, thereby making it possible to reconstruct in a unique way

to the central lattice points when both descriptions are received, it
is required that each central lattice point is associated with one and

only one sublattice point from each sublattice. In situations where

central lattice points are on the boundary of sublattice Voronoi

cells, ties must be broken. Tie breaking will in general influence
the shape of a Voronoi cell, i.e. change it from that specified by the

sublattice. A change of shape of the Voronoi cell affects the nor-

malized second moment, hence the “quality” of the reconstructed

source is affected. Sublattices having no central lattice points on
the boundary of their Voronoi cells are called clean. In [9] partial

answers are given to when a central lattice contains a sublattice of

index Ni that is geometrical similar to the central lattice, and nec-

essary and sufficient conditions are given for any central lattice in

two dimensions to contain a geometrical similar and clean sublat-
tice of index Ni. These results are extended in [7] to geometrical

similar and clean sublattices in four dimensions for the Z4 and

D4 lattice. In addition, results are given for any ZL lattice where

L = 4k, k ≥ 1. Table 1 briefly summarizes admissible Ni values
for the known cases. As a consequence, for the balanced case, an

index value of unity (maximum redundancy) is always optimal for

p ≥ 2/3, independent of the dimension of the source whenever

geometrical similar lattices are being used. This can be seen by
rewriting (14) as

p =
2

G(Λs)
G(Λ)

N4/L + 2
, (15)

where N ≥ 1.

5. RESULTS

In this section we present theoretical and experimental results ob-

tained by computer simulations for the balanced case. We quan-

tized a two-dimensional unit variance Gaussian source using the

A2 and the Z2 quantizers (lattices) at an entropy of 3 bits/sample
per description. Fig. 2 shows the theoretical average distortion

obtained with the A2 quantizer when varying N continuously ac-

cording to (14) as well as for different fixed values of N taken

from Table 1. The thick bottom line in the figure indicates the
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Fig. 2. Average distortion when the A2 quantizer is used on a

two-dimensional unit variance Gaussian source.

lower convex hull (LCH) obtained when N follows (14). Since

N is restricted to the values given in Table 1, we cannot reach the

LCH for all values of p.

For single description systems and mean-squared error distor-

tion criterion, the A2 quantizer is known to be optimal in two di-

mensions [8]. For the multiple description system considered here,
this is not always the case as the following example illustrates.

Each index value in Table 1 results in a different average distor-

tion (when the entropy is kept constant) for a given quantizer. For

each packet loss probability we use that index value which gives
the lowest average distortion. This gives rise to an operational

lower convex hull (OLCH) for each quantizer. In Fig. 3 is shown

the difference between the OLCH and the LCH for the A2 quan-

tizer. Keep in mind that the LCH is obtained when N follows (14).
Inserting the N values from Fig. 2 into (15), we find that they are

optimal for p ≈ 0.21%, 0.55%, 1.17% and 3.9%, which is where

the dips occur for A2 in Fig. 3. Also shown in Fig. 3 is the perfor-

mance curve obtained for the Z2 quantizer, when subtracting the
LCH from the OLCH of the Z2 quantizer. The dotted line indicate

the 0.1671 dB difference between the quantizers (dimensionless)

normalized second moments [8] and for low packet loss probabili-

ties we expect to approximately achieve this distortion gain when-
ever equivalent index values for the two quantizers are obtainable.

As the packet loss probability is increased the gain decreases and

approaches zero as p → 1. However, in Fig. 3, we notice that for

p ≈ 2.2% the distortion when using Z2 is lower than when using
A2. For p ≈ 20% this phenomenon is even more apparent (not

shown in the figures). These deviations occur whenever allowed

index values for Z2 gets closer to the optimal index value than

what is possible for A2 indices. In these situations, it is better to
use the Z2 quantizer than the A2 because the increase in distortion

for the A2 caused by using index values far away from optimal

values, is greater than the actual decrease in distortion caused by

A2’s lower normalized second moment.

In order to obtain experimental results, we used 20 realiza-

tions of length 105 of a two-dimensional unit-variance indepen-
dent identically distributed Gaussian source. For different values

of p and admissible values of N , we designed optimal quantiz-

ers by computing ν according to (13) to satisfy an entropy con-

straint of 3 bits/sample per description. Figure 4 shows both ex-
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Fig. 3. The LCH is here subtracted from the OLCH of the A2 and

Z2 quantizers. Dips occur whenever obtainable N values from

Table 1 are optimal.

perimentally and theoretically obtained OLCH’s for the Z2 and

A2 quantizers. The graphs are obtained by subtracting the OLCH
of the Z2 quantizer from the OLCH of the A2 quantizer. When-

ever the curves becomes negative, i.e. below the dotted line, the Z2

quantizer performs better than the A2 quantizer. We see that the

Z2 quantizer indeed performs better than the A2 quantizer around
p = 2%. Especially for high index values, i.e. low packet loss

probabilities, there is a good match between theory and the nu-

merically obtained results.

In four dimensions, we compared the OLCH of the D4 quan-

tizer [8] with the OLCH of the Z4 quantizer. From Table 1 we see
that the Z4 quantizer has more index values than the D4 quantizer

within a given range, so we expect the performance loss, caused

by using suboptimal index values, to be greater for the D4 quan-

tizer than for the Z4 quantizer. The greatest performance loss for
the D4 quantizer is around 0.2 dB. Since the difference in (di-

mensionless) normalized second moments between the two quan-

tizers is 0.3657 dB [8], D4 is always better than Z4. Other four

dimensional quantizers might be considered, e.g. a product quan-
tizer constructed by combining two A2 quantizers. However, find-

ing allowed index values for other four dimensional quantizers and

determining their performance in comparison with that of D4 is a

topic for future research.

6. CONCLUSION

In this work we derived analytical expressions for the central and

side quantizers which minimize the expected distortion of an LVQ

subject to entropy constraints on the side descriptions for given
packet loss probabilities. We showed that, for certain packet loss

probabilities, the Z2 quantizer performs better than the A2 quan-

tizer. Our results suggest a practical way of determining which

lattice quantizers are optimal for given packet loss probabilities.
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Fig. 4. The difference between the OLCH of the Z2 quantizer and
the A2 quantizer.
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