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ABSTRACT

The practical design of multiple description quantizers
for diversity-based communication is investigated. A simu-
lated annealing based method is proposed for obtaining the
optimal index assignment for a multiple-description vector
quantizer. This method can be used to design quantizers
having an arbitrary number of descriptions with equal or
unequal transmission rates. According to the simulation
results, the proposed method yields multiple-description
quantizers with performance comparable with or better than
previously reported results.

1. INTRODUCTION

The main idea of multiple description (MD) source cod-
ing [1] is to encode each block of source samples into two
or more different descriptions so that diversity-based com-
munication is possible over channels prone to break down.
MD coding, including MD vector quantization (MDVQ),
has gained much attention recently due to potential appli-
cations in communication over packet networks and fading
channels. The design of MD quantizers was first studied in
[2], where an algorithm for designing MD scalar quantizers
(MDSQ) together with two heuristic procedures for choos-
ing a good index assignment (IA) based on asymptotic (high
rate) results were presented. The design algorithm, which
is a generalization of the well known Lloyd algorithm for
quantizer design, is guaranteed to converge to a locally op-
timal solution. Even though, the extension of this algorithm
to MDVQ was considered in [3], the IA selection proce-
dures suggested in [2] did not extend to VQ and no method
was suggested for choosing good IA for MDVQ. In gen-
eral, the IA problem is a combinatorial optimization prob-
lem in which the number of possible solutions precludes
an exhaustive search over the solution space. The problem
is similar to the IA problem arising in noisy channel vec-
tor quantizers wherein search algorithms such as simulated
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Fig. 1. A communication system based on MDVQ.

annealing (SA) [4] and binary switching algorithm (BSA)
have shown to produce good IA. Previously BSA algorithm
has also shown to produce good IA for MDVQ [5]. A dif-
ferent approach to MDVQ design, based on deterministic
annealing (DA) was presented in [6]. Simulation results for
both MDSQ for iid Gaussian source and MDVQ for Gauss-
Markov source were presented in [6].

The main contribution of this paper is a study of MDVQ
design based on optimal IA obtained by SA . This method
may be used to optimize IA of a fixed MDVQ or to obtain
initial IA for iterative design of MD quantizers as proposed
in [2] and [3]. It is our observation that this approach pro-
vides an effective and a relatively simple way to design un-
structured MDVQ with an arbitrary number of descriptions.
We compare our results with other known work, including
MDSQ designs in [2], MDVQ in [6], and optimal IA in [5].

2. PROBLEM FORMULATION

A block diagram of an MDVQ system is shown in Fig. 1.
Let X ∈ R

k be a stationary random ergodic process with
pdf p(x). This process is to be quantized and communi-
cated over a diversity system with M independent channels
having rates Rm, m = 1, . . . , M . Each channel in this
system has two random states: working perfectly (no er-
rors) or broken down (no output). The encoder generates
M descriptions for each source vector X which are trans-
mitted over the M channels. For MD coding to be useful,
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the M descriptions representing a source vector must not
be identical. It is assumed that the encoder has no knowl-
edge as to which of the M channels are functioning at a
given time. On the other hand, the decoder can identify
the faulty channels and it forms an estimate for the source
vector using only the descriptions that it receives over the
functioning channels. The MDVQ encoder can be described
by two mappings as shown in Fig. 1. The first is a par-
tition of the space of input vector into N non-overlapping
cells ε : R

k → {1, 2, . . . , N}. The second mapping is the
IA in which each cell in the encoder partition is assigned
M indices (codewords). That is, given I = ε(X), M in-
dices are generated, Im = fm(I), m = 1, . . . , M , where
Im ∈ {1, . . . , Nm} and Nm = 2kRm .

In this paper, we will focus on the two channel case
M = 2, for simplicity (the extensions required for M > 2
are straightforward). As usual, the mean square error (MSE)
will be used to measure the quantizer distortion. Let the en-
coder ε be defined by N cells Ωi, i = 1, . . . , N , where⋃N

i Ωi = R
k and

⋂N
i Ωi = ∅. Let c(i), i = 1, . . . , N

represent the decoder codebook to be used when both chan-
nels are working and cm(j), j = 1, . . . , Nm represent the
decoder codebook to be used when only the channel m is
working, m = 1, 2. Also, let µ be the probability that
both descriptions are received, and µm be the probability
that only mth description is received. These probabilities
are easily obtained if the failure (or loss) probability of each
channel is given. We will assume that when both channels
fail, re-transmissions are performed until at least one de-
scription is received. Then, the MSE of the MDVQ system
is given by

D = µD0 + µ1D1 + µ2D2 (1)

where D0 = E‖X − c(i)‖2, D1 = E‖X − c1(i1)‖2, and
D2 = E‖X − c2(i2)‖2, with i1 = f1(i) and i2 = f2(i)
being the output of MDVQ encoder for the input x such
that ε(x) = i. The term D0 represents the central distor-
tion whereas the term µ1D1 + µ2D2 represents the side-
distortion. Given the rate constraints R1 and R2, an optimal
MDVQ is defined as the one which minimizes D in (1). As
any other VQ optimization problem, the closed form solu-
tion of the MDVQ design problem is difficult. On the other
hand, iterative procedures similar to the Lloyd algorithm has
been used to design locally optimal MD quantizers [2], [3].
The necessary conditions for the optimality of the encoder
and the decoder are given below.

Optimal Decoder- Given an encoder ε, and IA functions
f1 and f2, the optimal code vectors are the minimum MSE
(MMSE) source estimates given by

c∗(i) = E{X|i}, (2)

c∗m(im) = E{x|im}, m = 1, 2 (3)

where i = 1, . . . , N and im = 1, . . . , Nm. The central
codebook c simply consists of centroids of the encoder cells

Ωi, i = 1, . . . , N . Note that the central codebook is inde-
pendent of IA. The side codebooks can be given in terms of
the central codebook as

c∗m(j) =
N∑

i=1

c∗(i)P (I = i|fm(i) = j), (4)

j = 1, . . . , N
Optimal Encoder- Given a set of decoder codebooks c,

c1, and c2, and IA functions f1 and f2, the MSE in assign-
ing a source vector x to the ith cell of the encoder ε is

Di(x) = µ‖x − c(i)‖2 + µ1‖x− c1(i1)‖2

+µ2‖x− c2(i2)‖2, (5)

where i1 = f1(i) and i2 = f2(i). Then, the optimal encoder
is given by (superscript denotes transpose)

ε∗(x) = i ⇐⇒ βi − 2xT αi ≤ βj − 2xT αj ∀j 	= i, (6)

where αi = µc(i)+µ1c1(i)+µ2c2(i) and βi = µ‖c(i)‖2+
µ1‖c1(i)‖2 + µ2‖c2(i)‖2, i = 1, . . . , N .

The problem of MDVQ design may also be formulated
as a constrained optimization problem in which the central
distortion is minimized subject to constraints on side distor-
tion [2], [3]. The solution to this problem is obtained by
setting µ = 1 and interpreting µ1 = λ1 and µ2 = λ2 as
Lagrangian multipliers in (1).

3. INDEX ASSIGNMENT IN MDVQ

Note that, in MDVQ, the mapping F : {I1, I2, . . . , IM} →
I is unique. Hence, the central distortion D0 in (1) is not
a function of IA. However, the mapping from any other
sub-set of indices {Ij , Il, . . . , Im} to I need not be unique,
meaning that if one or more descriptions are lost, the cor-
responding encoder cell cannot be exactly determined. In
this case, the decoder has to produce the best estimate of
the source vector based on the received set of indices. The
resulting side-distortion can be minimized by the optimal
selection of IA. That is, given the encoder ε and decoder
codebooks c, c1, and c2, the optimal IA is obtained by min-
imizing µ1D1 +µ2D2 in (1) with respect to f1 and f2. This
is equivalent to minimizing the cost function

J(f1, f2) =
N∑

i=1

{
[µ1‖c1(f1(i))‖2 − 2gT

i c1(f1(i))]

+µ2[‖c2(f2(i))‖2 − 2gT
i c2(f2(i))]

}
Pi, (7)

where gi is the centroid of Ωi and Pi = P (X ∈ Ωi). When
the codebooks satisfy the optimality conditions in (2) and
(4), (7) simplifies to

J(f1, f2) =
N∑

i=1

[
µ1‖c(i) − c1(f1(i))‖2 +

µ2‖c(i) − c2(f2(i))‖2
]
Pi. (8)
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This describes MSE due to using code vectors from the side
codebooks instead of the central codebook at the decoder.

Let A be an N1 × N2 two-dimensional matrix and call
it the IA matrix (in M channel problem, this will be an M -
dimensional matrix). The mappings f1(i) and f2(i) are an
assignment of the encoder cell Ωi to the (f1(i), f2(i))th el-
ement of the matrix A. In particular, the N non-zero ele-
ments of the IA matrix are given by

A(f1(i), f2(i)) = i, i = 1, . . . , N. (9)

If only the diagonal elements are used, we have the ordinary
(single description) VQ. On the other hand MDVQ results
when non-diagonal elements are also used. When N <
N1N2, not all elements of A are used and these represent
unused IA combinations. Given the two rates R1 and R2,
and an encoder partition ε, there are (N1N2)!/(N1N2−N)!
possibilities for filling the IA matrix. Hence in most cases,
it is impractical to find the optimal IA matrix using an ex-
haustive search. In the following, we propose the use of SA
for minimizing the cost function in (7) with respect to in-
stances of the IA matrix. SA has been used in various com-
binatorial optimization problems including code design, see
[4] and the references therein. Apart from the cost function
used, the IA optimization algorithm used in this paper is
similar to the noisy channel IA optimization algorithm de-
scribed in [4]. The algorithm, as applied to MDVQ, can be
summarized as follows:

1. Set initial temperature T = T0 (a high value); Select
an initial IA matrix A = A0.

2. Randomly perturb A to A′ and evaluate the change
∆J in the cost function in (7).

3. If ∆J < 0, replace A by A′; If ∆J ≥ 0, replace A
by A′ with probability exp(−∆J/T ).

4. If the number of iterations which resulted in a cost
decrease exceeds a prescribed limit kl or if too many
iterations (km) have been performed without any cost
decrease goto Step 5); Otherwise goto Step 2).

5. Lower the temperature as αT → T ; If T is below
some prescribed freezing temperature Tf or if the cur-
rent solution appears stable, terminate the algorithm;
Otherwise goto Step 2)

The space of candidate solutions in our problem consists of
all possible instances of the IA matrix A. Thus, the per-
turbation of a given solution A to A′ can be achieved by
interchanging two randomly chosen elements of A. In our
implementation, we used T0 = 10, Tf = 10−10, α = 0.98,
kl = 5, and km = 500.

4. EXPERIMENTAL RESULTS

In this section, the effect of IA optimization on the perfor-
mance of MD quantizers is investigated by designing two-
dimensional (d = 2) MDVQ with M = 2 descriptions
for Gaussian sources. Both an iid source and a first-order
Gauss-Markov (GM) source with a correlation coefficient
of 0.9 have been considered. The results presented in this
section have been obtained using a training set of 400,000
source samples.

Fig. 2 shows the performance of MDVQ designed for
iid source as a function of description (“packet”) loss prob-
ability. In this case, the mean of the source has been used as
the decoder output when both descriptions are lost, so that
these results can be compared with those presented in [5]
(it is worth noting that curve (b) in Fig. 2 appears identi-
cal to the performance curve of optimal system in Fig. 4
of [5]). Fig. 3 shows a similar set of results for the GM
source. In each case, the initial encoder is a source opti-
mized VQ encoder obtained by the Lloyd algorithm while
the initial IA has been picked randomly. The curve (a) in
both Figs. 2 and 3 indicate the performance of the initial
system. The curve (b) is the performance of the system in
which IA has been optimized using the SA algorithm (en-
coder has not been changed). The curve (c) has been ob-
tained by iteratively optimizing the initial encoder and the
codebooks using the optimality conditions given in Sec. 2
(i.e. similar to the Lloyd algorithm), without explicit opti-
mization of initial IA. Finally, the system of curve (d) has
been obtained by first optimizing the initial IA using the SA
algorithm and then iteratively optimizing the encoder parti-
tion and the codebooks as in the case of curve (c).

It can be seen that IA optimization alone can yield a
good MDVQ. On the other hand, even if the initial IA is ran-
domly picked, improving the encoder partition and decoder
codebooks by Lloyd iterations leads to an MD quantizer
with somewhat better performance. However, the quantiz-
ers obtained by these two approaches are quite different.
In the former case, the IA is optimized keeping the en-
coder partition fixed. Hence, the encoder resolution is not
changed and the central distortion remains unchanged. It is
the reduced side-distortion that improves the overall perfor-
mance. In the latter case, the central distortion is traded-off
for side distortion by modifying the encoder partition, so as
to minimize the overall distortion. In this case, the encoder
resolution N∗ in the final design can be less than that in the
initial system (some cells get merged during the Lloyd it-
erations), which introduces more redundancy into the trans-
mitted indices. From both figures it can be seen that best
performance is obtained when Lloyd iterations are carried-
out on a system with optimized IA. However, note that as
the loss probability is increased (beyond about 0.4 here), IA
optimization alone appears to be sufficient and optimizing
the encoder in addition provides no significant advantage.
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Fig. 2. Performance of MDVQ for iid Gaussian source
(M = 2, k = 2, R1 = R2 = 2 bits/sample).

At higher loss probabilities, the side distortion (which is a
function of IA) dominates over central distortion.

Finally, in Tables 1 and 2, MDSQ and MDVQ with
SA based IA (SA-MDSQ and SA-MDVQ respectively) are
compared with those obtained by deterministic annealing
(DA) as reported in [6]. According to these results, MD
quantizers with optimized IA appear to perform somewhat
better than DA-based designs. We have also compared the
performance of SA-MDSQ and that reported in Table III of
[2] and found SA-MDSQ to be slightly better.

5. CONCLUDING REMARKS

SA based IA optimization method can be effectively used
to design MDVQ with unbalanced descriptions. The perfor-
mance of MDVQ obtained by this method was found to be
comparable or better than previously reported results. In
most cases, the IA optimization alone appears to yield a
good MDVQ. At low packet loss probabilities however, op-
timizing the encoder does yield an additional improvement
that may be significant.

Table 1. Comparison of SA-MDSQ and MDSQ from
Fig.1 of [6] for iid Gaussian source with R1 = R2 = 3
bits/sample, λ1 = 0.006, λ2 = 0.012.

MDSQ from [6] SA-MDSQ
D0 (dB) -26.5 -27.17
D1 (dB) -4.60 -5.15
D2 (dB) -12.51 -14.09
D (dB) -23.02 -23.74
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Fig. 3. Performance of MDVQ for Gauss-Markov source
(M = 2, k = 2, R1 = R2 = 2 bits/sample).

Table 2. Comparison of SA-MDVQ and MDVQ from Fig.3
of [6] for Gauss-Markov source with k = 2, R1 = R2 =
1.5 bits/sample, λ1 = λ2 = 0.01.

MDVQ from [6] SA-MDVQ
D0 (dB) -15.13 -15.11
D1 (dB) -1.76 -1.93
D2 (dB) -0.19 -2.06
D (dB) -13.20 -13.62
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