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Abstract— We aim at increasing the throughput of the hybrid
automatic retransmission request (HARQ) protocol in Space-
Time (ST) coded multi-antenna transmission systems. By utilizing
reliability information at the decoder, we obtain an improved
probability of successful decoding, which enhances the overall
system throughput at low-complexity. Simulations and analytical
results demonstrate the performance of our scheme in AWGN
and fading multi-input multi-output (MIMO) channels.

I. INTRODUCTION

Demand in wireless connectivity has led to major advances
providing reliable high data rates over wireless channels.
Diversity is typically employed to mitigate channel fading
effects in time, frequency, or space [1], [5]–[7]. Recently, full-
diversity and full-rate (FDFR) ST codes with any number of
transmit- and receive-antennas in MIMO fading channels have
been proposed to achieve high performance and high data rates
[5]. Although ST coding has well appreciated merits in coping
with channel effects, HARQ is typically employed to improve
the low throughput of ARQ-only protocols [6].

On the other hand, algebraic hard decision decoding (HDD)
algorithms are popular because they lead to low complexity
at the receiver. While optimal (unquantized) soft decision
decoding (SDD) algorithms provide up to 3dB coding gain
relative to HDD [7], HDD offers the distinct advantages of
low decoding complexity and robustness to channel-induced
interference such as jamming, impulsive noise, and fading; see
e.g., [3] and references therein. In addition, it has been shown
that by resorting to reliability information, the error resilience
of HDD can be increased while retaining low complexity [8].

Many HARQ schemes with various forward error correction
(FEC) algorithms have been pursued to increase the system
throughput [4]. Recently, HARQ schemes combined with ST
codes have been proposed [6]. Other researches have shown
that ST codes can be effective in HARQ protocols [9].

In this paper, we wed the merits of HARQ, ST coding,
and HDD to increase the system throughput while maintaining
low-complexity. First, we combine all received copies of the
same packet by using maximum ratio combining (MRC).
Combining packets has the effect of increasing the number of
receiver antennas with every retransmission. Therefore, with
HARQ and ST coding, transmit and receive diversity is es-
tablished by increasing the diversity order per retransmission.
Moreover, our development of an efficient HDD algorithm
provides improved error performance at low-complexity. This
combination allows the receiver to perform reliable decoding
and hence reduce the probability for retransmission. In this

Fig. 1. The system model

paper, we assume that acknowledgment (ACK) or negative
acknowledgment (NAK) is fed back to the transmitter and
the channel state information (CSI) is not available at the
transmitter. However, when the channel feedback is allowed,
we may further increase the system throughput in time-varying
channel conditions by using adaptive modulation and coding
(AMC) [4].

II. PRELIMINARIES

Consider HARQ system equipped with multiple antennas,
as shown in Fig. 1. The cyclic redundancy check (CRC)
coded packet b := [b1, . . . , bK ] of length K is encoded
using a rate 1/Rc convolutional code (CC) to result in Rc

encoded packets c
(j) := [c

(j)
1 , . . . , c

(j)
K ], where j = 1, . . . , Rc,

c := {c(1), . . . , c(Rc)} belongs to a codeword set C with code
distance d, and c

(j)
k is an element of GF(2). For simplicity,

we will use Rc transmit antennas equal to the number of
encoded packets (i.e., code rate). Although we use convolu-
tional code in this paper, we do not restrict ourselves to any
particular coding system. Subsequently, encoded data packets
are modulated using BPSK and then encoded using ST coding
such as Alamouti [1] and FDFR codes [5]. ST coded packets
are forwarded to each antenna and then transmitted over an
AWGN channel with variance σ2 := No/2.

At the receiver, we can obtain the ST decoded sequence
c̃
(j)(n) := [c̃

(j)
1 (n), · · · , c̃

(j)
K (n)] for the nth transmission of

the same packet c
(j), where c̃

(j)
k (n) ∼ N (±√E , No/(2n)),

and E denotes the received energy per symbol. We will explain
the reduced noise variance of No/(2n) in Section III.

Assume that N copies, {c̃(j)(n)}N
n=1 have been received

and CRC checked as unreliable. These packets are combined
into a single packet by taking the average of the received
values of each re-transmitted packet as follows:

r
(j)
k (N) =

1

N

N∑
n=1

c̃
(j)
k (n), (1)
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where r
(j)(N) := [r

(j)
1 (N), . . . , r

(j)
K (N)] for j = 1, . . . , Rc.

Next, the quantizer compares r
(j)
k (N) with a decision

threshold (zero when a priori probabilities are equal, i.e.,
P (0) = P (1) = 1/2) to output the hard decision sequence
z

(j)(N) := [z
(j)
1 (N), . . . , z

(j)
K (N)] with z

(j)
k (N) ∈ {0, 1}.

Letting z := {z(1)(N), . . . ,z(Rc)(N)}, the decoder metric
for c ∈ C, denoted by CMz(c), is the Hamming distance
defined as:

CMz(c) =

Rc∑
j=1

K∑
k=1

|c(j)
k − z

(j)
k (N)|. (2)

Then, a codeword c is more likely to be the transmitted
codeword than another codeword c

′

if and only if CMz(c) ≤
CMz(c

′

); i.e., maximum likelihood (ML) decoding always de-
codes z to the codeword with the smallest Hamming distance.

However, r
(j)
k (N) close to the decision threshold are likely

unreliable, which motivates us to puncture those bits belonging
to the interval −γp < r

(j)
k (N) < γp, where γp is a suitably

chosen puncturing threshold. The reliability information will
be denoted as α

(j) := [α
(j)
1 , . . . , α

(j)
K ], with α

(j)
k ∈ {0, 1},

where α
(j)
k = 0 indicates that the kth bit in z

(j)(N) is
unreliable. We call this algorithm “receive-puncturing” to
differentiate it from the known transmit-puncturing used to
increase FEC rates.

Packets {z(j)(N)}Rc

j=1 with corresponding reliability infor-
mation α := [α(1), . . . ,α(Rc)] are processed jointly by the
Viterbi decoder to decode the original packet based on the
metric

CMz(c,α) =

Rc∑
j=1

K∑
k=1

α
(j)
k |c(j)

k − z
(j)
k (N)|, (3)

from which, it is shown that unreliable bits marked by α
(j)
k =

0 do not contribute to the calculation of the metrics in the
decoder. Thus we observe from (3) that relative to conventional
HDD, the hardware complexity required by our approach
entails just AND gates for implementing α.

If the combined packet turns out to be decoded unreliably by
the CRC decoder, a retransmission is requested and the trans-
mitter sends another copy {c(j)}Rc

j=1. The receiver continues
to request and combine packets until successful decoding.

Our objective in this paper is to show that the receive-
puncturing scheme employing reliability information can im-
prove the throughput of HARQ for an ST coded system.

III. HARQ WITH RELIABILITY

In this section, we optimize the decoder so that the system
throughput of HARQ can be increased. In order to attain
this goal, we rely on the algorithm in [3], where the optimal
puncturing threshold γ∗

p enables the codeword decision error
probability (CEP) to be minimized at the output of the Viterbi
decoder. For simplicity, we temporally omit the transmission
index n in this section.

A. Optimal Puncturing Threshold

To derive γ∗
p that determines the entries of the reliability

vector α, we define the punctured code distance as:

d(α) =

Rc∑
j=1

K∑
k=1

α
(j)
k · |c(j)

k − c
(j)′

k |, (4)

where c
(j) �= c

(j)′ . We note that d(α) is a random variable
corresponding to the code distance after puncturing and takes
values between 0 and d (original code distance). Although
the puncturing scheme decreases the code distance, the error
correction capability can increase due to the enhanced signal-
to-noise ratio (SNR) [3]. Specifically, the probability of having
d(α) = m is given by

Pr(d(α)=m)=

(
d

m

)
P d−m

p (γp){Pcp(γp) + Pep(γp)}m
, (5)

where Pcp(γp), Pep(γp), and Pp(γp) denote the probabilities
of correct symbol, error, and puncturing, which are defined as:

Pq(γp) =

1∑
i=0

P (i)

∫
Si

q

f(r|i)dr, (6)

where f(r|i) is the probability density function (PDF)
of the observation r conditioned on signal class i ∈
{0, 1}, Si

q denotes the region that yields Pq(γp) ∈
{Pcp(γp), Pep(γp), Pp(γp)}, assuming that signal class i ∈
{0, 1} is transmitted. These probabilities obey the relationship
Pep(γp) + Pcp(γp) + Pp(γp) = 1.

To derive the averaged CEP when receive-puncturing
scheme is employed, we assume that the all-zero codeward
(AZC) is transmitted and the codeword being compared with
the AZC has distance d from the AZC. Then, the CEP of
conventional HDD becomes

PCEP(d) =
d∑

m=�(d+1)/2�

(
d

m

)
Pm

e P d−m
c , (7)

where Pe = Pep(0), and Pc = 1 − Pe [7]. If a puncturing
process is employed, for code distance d, the CEP averaged
with respect to d(α) can be alternatively expressed as [3]

P̄CEP(d) =

d∑
m=0

(
d

m

)
P d−m

p (γp)

m∑
k=�m+1

2
�

P k
ep(γp)P

m−k
cp (γp).

(8)
We note that if γp = 0, i.e., Pp(γp) = 0 in (8), then the average
CEP (8) becomes the CEP of conventional HDD. Since it is
difficult to find the γ∗

p minimizing P̄CEP(d) in closed form, we
use Chernoff’s approximation [7], based on which, we obtain
the following upper bound on CEP:

P̄CEP(d) ≤
d∑

m=0

(
d

m

)
P d−m

p (γp) {4Pep(γp)Pcp(γp)}
m

2

=

(
Pp(γp) +

√
4Pep(γp)Pcp(γp)

)d

.

(9)
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By differentiating the bounded P̄CEP(d) in (9) with respect to
γp, and setting it equal to zero, the optimal threshold γ∗

p is
found to obey

Pep(γ∗
p)

Pcp(γ∗
p)

=

{
P

′

ep(γ∗
p)

P ′

cp(γ∗
p)

}2

, (10)

where prime denotes differentiation. Choosing the threshold
to satisfy (10) is shown in [3] to optimize the decoder
performance. The solution of (10) is unique and valid for the
exact CEP in (8) [3].

B. Throughput Analysis

To derive the throughput of HARQ, we assume an ideal
retransmission protocol with no delay between packet re-
transmissions, and the error/delay-free feedback channel. The
throughput Γ is then a function of the average number of
transmissions Nr by the HARQ protocol.

Let P (Du(n)), P (Dd(n)), and P (Dc(n)) be the probabil-
ities of a combined received sequence after n transmissions
that contain undetected errors, detected errors, and no errors,
respectively. Note that P (Dd(n)) is equivalent to the event of
a retransmission request. These obey the relationship:

P (Du(n)) + P (Dd(n)) + P (Dc(n)) = 1. (11)

Assuming that P (Du(n)) is negligible for most CRC codes,
Nr can be expressed as

Nr =1 + P (Dd(1)) + P (Dd(1), Dd(2))+

· · · + P (Dd(1), Dd(2), . . . , Dd(n)) + · · · .
(12)

The joint probability can be lower and upper bounded by [2]

1 +

∞∑
n=1

n∏
i=1

P (Dd(i)) ≤ Nr ≤ 1 +

∞∑
n=1

P (Dd(n)). (13)

P (Dd(n)) can also be upper bounded as:

P (Dd(n)) � 1 − P (Dc(n)) ≤ 1 − (1 − P (E(n)))
K

, (14)

where P (E(n)) is the probability of a decoding error event
during Viterbi decoding on the nth transmission. Thus, the
upper bound of Nr in (13) is given by

Nr ≤ 1 +

∞∑
n=1

{
1 − (1 − P (E(n)))

K
}

. (15)

Given the free distance dfree of the convolutional code,
P (E) (= P (E(1))) can also be bounded by [7]

P (E) ≤
∞∑

d=dfree

adPCEP(d), (16)

where the distance spectra ad represents the number of paths
with distance d. Notice that the upper bounded CEP of the
conventional HDD is given by PCEP(d) ≤ [4Pe · Pc]

d/2, and
the average CEP of our algorithm with optimal puncturing
threshold γ∗

p is

P̄CEP(d) ≤
(
Pp(γ∗

p) +
√

4Pep(γ∗
p) · Pcp(γ∗

p)
)d

. (17)
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Fig. 2. Puncturing threshold vs. CEP

Let us now describe how P (E(n)) is determined. To this
end, we will use the variance of the received symbol c

(j)
k (n)

and the effective SNR after n packets are combined:

var[c(j)
k (n)] =

1

n
· var[c(j)

k (1)],

SNR(n) = n · SNR,
(18)

where SNR := E/σ2
ω represents SNR without combining.

Consequently, the MRC of n packets increases the effective
received SNR by a factor n.

Let PCEP(d;n) and P̄CEP(d;n) be the CEP of conventional
HDD and the CEP of our scheme with n combined packets.
PCEP(d;n) can be calculated by plugging Pe with the reduced
noise variance by a factor n into PCEP(d), while P̄CEP(d;n)
can be obtained by choosing the optimal puncturing thresh-
old corresponding to the increased SNR. Recalling that our
optimal puncturing thresholds minimize the CEP, we deduce
that

P̄CEP(d;n) ≤ PCEP(d;n), (19)

which leads to a lower P (E(n)) for our algorithm.
Based on this derivation of the average number of trans-

missions, we can evaluate a lower bound of our throughput
performance. Because we utilized a rate 1 ST code (e.g.,
Alamouti code [1]), the throughput can be expressed as
Γ := 1/Nr. Therefore, our assertion that receive-puncturing
enhances system throughput has been confirmed.

IV. SIMULATION RESULTS

To verify performance, we conduct simulations for both
AWGN and Rayleigh fading channels. In all experiments,
we use Alamouti ST code with 2 transmit and 1 receive
antenna and encode each data block (K = 20000) using a
rate Rc = 1/2 convolutional code (133,171) with a constraint
length 7, and minimum code distance 10.

In Fig. 2, we illustrate the puncturing threshold versus CEP.
It is observed that there exist optimal thresholds that minimize
the CEP for each SNR. Noting that PCEP(d) of conventional
HDD corresponds to P̄CEP(0), we deduce the improvement
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Fig. 3. BER vs. the number of transmissions in AWGN (SNR=0dB)

of our scheme. We also plot the minimum points found by
simulation (referred to as SET) and the points corresponding
to the puncturing thresholds of (8) and (10) (referred to as
ERT and CAT), for which the CEP difference between them
is quite small.

BER performance versus the average number of transmis-
sions for SNR=0dB is shown in Fig. 3. Because the number
of bits in our decoding algorithm (referred to as punctured
(P)HDD) is 2-bit (1-bit for HDD + 1-bit reliability informa-
tion), we compare with a 2-bit quantized SDD. It is observed
that our BER is similar to a 2-bit quantized SDD, or even
better when the number of transmissions increases. However,
one should recall that the complexity of our algorithm is lower
than that of a 2-bit quantized SDD. We also note that the
gaps between the performance using the optimal thresholds
calculated by Chernoff bound of CEP as in (9) and those by
the exact CEP as in (8) are relatively small.

Figure 4 depicts the average number of transmissions versus
SNR. As expected from Fig. 3, the number of retransmissions
is similar to 2-bit quantized SDD. It is seen that at high SNR,
where on average only one transmission is needed, the error
performances of the 4 schemes tend to coincide.

For Rayleigh fading channel described by Jakes’ model with
Doppler frequency 100Hz for 11MHz symbol transmission
on a 2.4GHz carrier frequency, we assume that the channel
information is perfectly known to the receiver and zero forcing
(ZF) equalization is used. As shown in Fig. 5, our scheme
performs well compared with SDD, conventional HDD, and
2-bit quantized SDD.

V. CONCLUSIONS

We have derived an efficient HARQ protocol equipped with
ST coding to enable transmit and receive diversity. Relying
on reliability information, we relied on receive-puncturing to
further increase the overall system throughput at low decoding
complexity thanks to HDD. Simulations illustrated the merits
of our algorithm for both AWGN and fading channels.
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