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ABSTRACT

In this paper, we define an ARQ protocol for MIMO flat-fading
channels which varies the bit-to-symbol mapping per retransmis-
sion. We begin by defining a model for distinctly mapped trans-
missions through MIMO channels, and the effect this mapping di-
versity has on a sphere decoder receiver. Varying the symbol map-
ping complicates the sphere decoding process, particularly for the
enumeration of candidate solutions within the sphere. A technique
that promises quick candidate enumeration is suggested, borrow-
ing concepts from existing closest point search schemes. The value
of mapping diversity, in reducing BER and reducing computational
complexity, is analyzed.

1. INTRODUCTION

Critical figures of merit for a communication system often include
low frame error rates (FER) and high data throughputs to its end
users. Effective handling and reduction of packet retransmissions
are vital in improving performance. Generally, if errors remain
(possibly after error correction) in reception of a transmitted data
packet, a request for retransmssion is made to the transmitter. As a
result, the development and exploitation of Automatic Repeat re-
Quest (ARQ) protocols has been the subject of much research at
both the network and physical layers. At the physical layer, various
approaches have been proposed for both packet combining and im-
proving diversity among these retransmissions. Chase developed a
maximum likelihood combining scheme for an arbitrary number of
coded packets, concatenating

�
copies of a codeword into a single

codeword [1]. Harvey and Wicker proposed several ARQ strate-
gies, including an approach where soft-decoded codewords from
multiple packet transmissions are combined into a single soft code-
word [2]. Stuber and Narayanan developed an ARQ receiver using
error correcting codes where the extrinsic information from the
decoding of previous packets is reused [3]. Recently, an approach
involving adapting the bit-to-symbol mapping for each retransmis-
sion was developed, providing significant reduction in BER while
requiring minimal increase in system complexity [4, 5].

This work studies the effectiveness of packet retransmissions
in multiple-input, multiple-output (MIMO) systems, where mul-
tiple antennas may be present at the transmitter and/or receiver.
The spatial diversity provided by multiple antennas is known to
dramatically increase system capacity [6]. As a result, MIMO sys-
tems have become important and popular research subjects. In par-
ticular, the combination of MIMO spatial diversity with temporal
diversity has led to widespread development of space-time coding
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schemes [7, 8]. As packet retransmissions are a form of temporal
diversity, this paper overlaps considerably with space-time coding.
However, in ARQ we are limited to using incremental redundancy
in order to minimize the number of retransmissions. Others have
recently studied packet retransmissions in MIMO systems. Ong-
gosanusi et al. introduced methods for combining packet transmis-
sions using zero-forcing and MMSE receivers [9]. Ding and Rice
proposed a hybrid ARQ protocol involving spatio-temporal vec-
tor coding and multi-dimensional TCM [10]. Nguyen and Ingram
investigated hybrid ARQ protocols for systems that use recursive
space-time codes [11].

In this paper, we define an ARQ protocol for MIMO flat-
fading channels where the bit-to-symbol mapping is varied per re-
transmission (mapping diversity). We begin with defining a model
for distinctly mapped transmissions through MIMO channels, and
the impact mapping diversity has on a sphere decoder receiver.
Varying the symbol mapping complicates the sphere decoding pro-
cess, mostly in the enumeration of candidates within the sphere.
We propose a method that promises fast candidate enumeration,
using a technique developed for various computational vision prob-
lems. A brief review of mapping diversity is provided, with some
insight into its effect in reducing BER and computational complex-
ity. We conclude with simulation results to validate the protocol.

2. SYSTEM MODEL

We begin with a set � of real or complex numbers that represent
the points of a signal constellation, e.g. 16QAM. Given a packet of
bits, consecutive groups of � � � � 
 � 
 bits ( � represents the decimal
equivalent of these bits) are assigned to symbols in � via a sym-
bol mapping function  � � � � � � � � � � 
 � 
 � � �  � . We consider�

transmissions of this packet, illustrated in Fig. 1, with a trans-
mitter with " antennas and a receiver with # antennas. More
specifically, we narrow our focus on blocks of the packet, with
each block $ & ( � * � � � � � � , . 0 containing " user labels, that are
transmitted

�
times. A # 2 " matrix 4 5 ( # 6 " ) represents

the 7 9 ; transmission channel, with < 5 > ? @ indicating the fading
coefficient between transmit antenna A and receive antenna B . This
fading gain is Rayleigh distributed, so that < 5 > ? @ is a complex-
valued Gaussian variable of zero mean and unit variance. For the7 9 ; transmission, the receiver obtains
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ŝ

ψ

ψ

1

M

Joint

ML

Detector

Fig. 1. Block diagram of multiple MIMO transmissions of a packet
with mapping diversity.

The noise vector � � is Gaussian with zero mean and variance� �� � � . Note that each label � � is distinctly mapped via
�

map-
ping functions � � � 
 
 
 � � � . The impact of varying the mapping
is discussed later; it has been shown to greatly reduce BER for
single-antenna systems [4, 5].

The receiver employs a joint ML decoder that incorporates � � 
 
 
 �  � to produces estimates �� � � �� � � 
 
 
 � �� � � � . Assum-
ing that the channels are perfectly known, the ML decoding rule
is

�� � 
 � �  � ��
��

� � �
� �  � � � � �� � � � � � � � 
 (2)

At first glance, minimizing the metric in (2) appears to require an
exhaustive search over all �  � � candidates. Fortunately, through
some algebraic manipulations, the metric can be expressed so that
an exhaustive search is avoided. By defining � � � � ��  � , the
metric is

��
� � �

� �� � � � � � � � � � � �� � � � �� � � � � � � � � 


Let � � be an upper-triangular matrix that satisfies � �� � � �
� �� � � . This is typically accomplished with a Cholesky decom-
position. The elements of � � are indicated using  � & ' ( , and the
metric becomes

��
� � �

��
� � �

 �� & � �
""""" � � � � � � � % � & � )

��
( � � ( �

 � & � ( � & � � � � � � � ( � � % � & ( �
"""""

�

(3)
This metric bears many similarities with the metric that is mini-
mized using sphere decoding. The primary difference involves the
inclusion of multiple transmissions and their different mappings.
We now discuss the application of sphere decoding to minimize
our metric while maintaining a low computational burden.

3. APPLYING SPHERE DECODING

In ML detection, sphere decoding has become a low cost alter-
native to exhaustive, brute-force searches [12, 13]. The primary
strategy in search reduction is the removal of all points outside of
a hypersphere centered about the received data point � . Beginning
with � � , labels whose mapped symbols fall inside the hypersphere
are sequentially selected to comprise a data estimate �� . Several
techniques exist that quickly enumerate all symbols/labels within
the hypersphere [13, 14]. This estimate is saved, and the radius of
the hypersphere is decreased to the distance between the symbols

of �� and � . This process is repeated until no candidates exist within
the hypersphere, and the most recent data estimate � becomes the
ML estimate. The expected complexity of sphere decoding is cu-
bic ( * + ) in most instances [12].

To apply sphere decoding to our multiple-transmission sce-
nario, we first define a hypersphere of radius , � , with a modifica-
tion of the rule proposed by Hochwald and ten Brink [14]

, �� �
��

� � � . � �/ 0 + �  �� � 2 � � � � � � �� � � � � � �� �  � 


The parameter 0 is chosen to ensure that the hypersphere contains
some candidates. From the metric (3), we focus on the label � �
by looking only at the 3 � * term of the summation. Thus, we
seek to choose a label � � that satisfies the inequality

��
� � �

 �� & � � � � � � � � � � % � & � � � 6 , �� 
 (4)

The set of all candidate labels that satisfy (4) is denoted by 7 � .
The issue of quickly enumerating these labels is discussed mo-
mentarily.

Given a method for fast candidate enumeration, the sphere de-
coding algorithm is easily applied. With the set 7 � , a candidate
label �� � is chosen and removed from 7 � , and we proceed in find-
ing a candidate for � � 8 � . The process described above is repeated,
where the 3 � * � / term of the summation in (3) is isolated, and�� is substituted into the 3 � * term. A candidate �� � 8 � is chosen
and removed from 7 � 8 � , and we proceed to find 7 � 8 � and �� � 8 � ,
etc. In constructing the candidate set 7 � , the inequality of interest
becomes ��

� � �
 �� & � � � � � � � � � � < � � � 6 , �� � (5)

with

< � � % � & � �
��

( � � ( �
 � & � ( � & � � � � � � �� ( � � % � & ( � �

> � �
��

( � � ( �
 �� & ( (

""""" � � � �� ( � � % � & ( )
��

A � ( ( �
 � & ( A

 � & ( (
� � � � �� A � � % � & A �

"""""
�




and radius

, �� � , �� �
��

� � �
> � 


The variable < � is the center of the region defined by (5), and
> �

adjusts the radius of this region by accounting for the 3 ) / through
* terms of the summation in (3).

When the decoder finishes with the 3 � / stage, we have an
estimate �� . This estimate is not necessarily the true ML estimate
as other points may still lie with the hypersphere. The radius , � is
updated to the distance between �� and � , which is computed using
(3). The decoding process starts over using this updated radius to
determine if a better estimate exists.

When the set 7 � is empty, then at least one of the previously
chosen candidates �� � ( � � 
 
 
 � �� � is incorrect and should be changed.
The decoder moves sequentially through the existing candidate
sets starting from 7 � ( � to 7 � until a non-empty set 7 D is encoun-
tered. It then chooses and removes a new candidate �� D from 7 D and
continues the decoding process with the creation of a new 7 D 8 �
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and �� � � � , etc. When the sets � � � � � � � � � � � are all empty, there
are two possible actions. If estimates for �� already exist, then the
most recent estimate is the true ML estimate. Otherwise, the initial
radius � � is too small and is increased; the decoding process starts
over with this new radius.

4. CANDIDATE ENUMERATION

When
	 
 � , the problem of enumerating points in (5) simpli-

fies to normal sphere decoding, and as previously mentioned, tech-
niques exist to quickly find a satisfactory � � . Unfortunately, these
techniques do not extend feasibly to cases where

	 � � . One
solution is to directly compute (5) for all �  � possible labels, and
sort these in ascending order to produce a list of viable candidates
for � � .

We propose an enumeration method that incorporates concepts
applied in many computational vision problems that require pat-
tern matching of eigen-decompositions. These problems frequently
require closest point searches to find the point � , in a fixed set of
points � in a � -dimensional space, that is closest in Euclidean
distance to a received data point � . To accomplish this search ef-
ficiently, an algorithm was introduced where the points of � are
sorted in each dimension, creating � sorted lists [15]. Given a
point � , a hypercube � is defined with center � , and points � � �
within the hypercube are quickly identified from the sorted lists.

The region specified by (5) can be rewritten, separating the
real and imaginary components, as


�
�  �

	 � � � � � � � � � � � � � � �� �  � � � � � � �
�

	 � � � � � � � � � � � � � � �� �  � � � � � � � � � �
This form follows that of a �

	
-dimensional hyper-ellipsoid re-

gion � � with axes of length � �  � � � � � along the " # $ real and
imaginary components, and center� � 
 � � � � � � � � � � � � � � 
 � � � � � � � � � � � � � � � 
 � � �
To find the candidate values of � � inside � � , a hyper-box region� � is defined that has center � � and edge length � � �  � � � � � along
the " # $ real and imaginary components. Since � � tightly bounds� � , all points in � � will also be in � � . Assuming that all sym-
bols � � � � � � �  are sorted along the

	
real and

	
imaginary

dimensions, a set of labels � �� inside � � is easily created. The set� � of candidate labels that fall in � � are discovered by evaluating
(5) for all labels in � �� . The details of using sorted lists to create� �� are found in the work of Nene and Nayar, who indicate that
the computational complexity of this search algorithm is generally
independent of the problem dimensionality [15]. We note that the
sorted lists can be created off-line and stored in memory at the
receiver.

5. APPLYING MAPPING DIVERSITY

To transmit the same label
	

times via
	

distinct mappings, ef-
fective mapping functions � � � � � � � � 
 should be selected. Pre-
vious works studied systems where the transmitter and receiver
each had a single antenna [4, 5]. Thus, any transmitted label was
considered individually, without any interference from other la-
bels within the packet. With multiple antennas, clearly this is not
the case, as all ' labels simultaneously interfere with each other.
However, as illustrated in (5), there are advantages to varying the

mappings. In the initial mapping � � � � � � , consider any pair of la-
bels that are mapped to a pair of closely spaced symbols in  .
Additional mappings � � � � � � � � 
 can increase the Euclidean dis-
tance between this pair of labels by mapping them to symbols in 
much further apart. This obviously reduces the probability of la-
bel misdetection. It also distributes the points � � � � � � � � � � � � 
 � � � �
more evenly, so that fewer candidates will fall inside � � (and � � ),
thereby reducing the computational complexity.

With these points in mind, we consider each transmitted la-
bel individually in choosing effective mappings. In this context,
the variables � � � � � � � � � � � 
 � � � roughly act as fading gains on

	
transmissions of the label � � . These transmissions take the form
of � � 
 � � � � � � � �

(
� , with

(
� being white, Gaussian noise as

before. We now review existing techniques to develop mappings
in flat-fading channels [5].

For finding mappings, optimality is defined as minimizing the
bit error rate (BER). A generic BER upper bound was developed
for

	
transmissions under symbol mapping diversity:� � � � �� �

 �
� � � � ��

�  ��  
� ! � � � � # � � � % � ! � � & 
 � % � � & 
 � � � � � � � (6)

where ! � � � � is the probability of transmitting � (generally �  �  � ),# � � � % � 

� � ' � ) + � * - /  1 + �  � , )  3 5 ) + 3 8 + + � � " � / % �. * , � �  �

is defined to account for the number of bit errors that result from
a label misdetection, and ! � � & 
 � % � � & 
 � � � � � � is the pairwise
error probability (PEP) that % is more likely to be detected than �
given that � is transmitted. Here, the metric & 
 � � � is defined as
�

�  � � � � � � � � � � � � � � �
For ARQ, a simpler, and probably sub-optimal, iterative so-

lution is performed by computing the
	 � th mapping given the

previous
	 � � mappings, usually starting with any Gray map-

ping for
	 
 � . In this iterative, best effort approach, future

mappings are justifiably ignored since additional packet transmis-
sions are undesirable. Our optimization problem then simplifies
to

�  �= ? A C � � � � �� �
 �

� � � � ��
%  �%  

� E � � � � 
 � � � � F � � 
 � F � � � (7)

where G is the set of all possible mappings and E � � � � � F � & � is the
pairwise BER that results from mapping label � to symbol � � 
and label F to symbol

& �  in the
	 # $ mapping,E � � � � � F � & � 
 ! � � � � # � � � F � L � � M � 5 � �

Though still computationally difficult, (7) falls into a category of
combinatorial optimization problems referred to as the Quadratic
Assignment Problem (QAP), and exact and approximate solvers
are available. For the optimization posed in (7),M 
 � & 
 � � � N � � & 
 � � � � � � � � � 
 � � 
 & � � � � � 
 � � 
 � � � �
leading to a PEP ! � � M � 5 � of

P Q ST U V XY [ \\] �
� ( �) _ 
 � ��

�  � � � � � � � � � � � � F � � � � � � 
 � � � � � & � � a b c e fg �
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Fig. 2. BER of
� � � � � � � transmissions through a � � � MIMO

channel using 16QAM constellations.

with � � � � � � 	 � 
 � � � 	  
 � � � 	 and � � � � � � � � � � � � � . This
PEP is numerically computed to provide the function � � � � � � � � � 	
to solve (7), producing optimal mappings for fading channels [5].

6. SIMULATION RESULTS

We briefly present simulation results that demonstrate the effec-
tiveness of mapping diversity in MIMO environments. The mod-
ulation type is 16QAM in a system with � � � transmit and

� � � receiver antennas. With a packet size of 800 bits (50
blocks), we compare retransmissions made using mapping diver-
sity against those using identical Gray mappings, for

� � � � � � �

transmissions. The channels � � � � � � � � 
 are independent, and re-
main constant through the (re)transmission of the packet.

Fig. 2 contains BER results obtained via Monte Carlo simula-
tion of 2000 packets, with SNR defined as

� � � � � � � � � � �	 . Clearly,
mapping diversity provides significant gains in BER, with about a
2 dB improvement for

� � � and over a 4 dB gain for
� � � .

A useful observation is the inherent gain achieved from the chan-
nel variation between retransmissions, regardless of the mapping
strategy employed. In cases where channels do not vary, block pre-
coding or permutation of retransmissions should sufficiently vary
the effective transmission channel.

7. CONCLUSION

An ARQ protocol for MIMO flat-fading channels was proposed
that incorporates mapping diversity. By combining distinctly map-
ped transmissions through MIMO channels, significant gains are
achieved. The joint receiver involves the application of sphere de-
coding, with a significant modification required for the enumer-
ation of candidates within the sphere. Borrowing concepts from
an existing closest point search technique employed for pattern
matching applications, a fast enumeration method is readily avail-
able.

Extensions of the work include the use of precoding for chan-
nels that do not vary significantly between retransmissions, and
a more detailed complexity analysis of the enumeration method.

We note that the ARQ mechanism described here may double as a
flexible, yet effective space-time coding scheme, particularly with
precoding for non-varying channels.
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