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ABSTRACT
In this work we provide the optimal coding strategy for meshed
wireless networks, where more links are active simultaneously, as-
suming as optimality criterion the rates of all the links. We for-
mulate the rate maximization problem as a Multi-objective Opti-
mization Problem (MOP). Assuming a multi-carrier modulation
for each user, we show how to allocate the power of each user
optimally according to a centralized power distribution algorithm.
We also propose a decentralized (suboptimal) but simpler algo-
rithm, based on the idea of Nash equilibrium (NE). Finally, we
compare the two strategies showing that the loss, in terms of in-
formation rate, of the decentralized strategy based on the Iterative
Water-filling Algorithm can be very small with respect to the op-
timal centralized solution, as the distance between the interfering
links is just a few times the distance of each link, thus making the
decentralized approach a viable solution.

1. INTRODUCTION

In this paper, we consider a wireless network composed of Q sources
(S) and as many destinations (D), operating simultaneously, and
we wish to find out the coding strategy for each user that, for a
given user power budget, maximizes the rate of all links. This is
a multi-objective optimization problem (MOP) and its solution is
not known in the general case. To simplify the solution, we as-
sume that the channels are time-invariant within each transmitted
block and that all users adopt a multi-carrier modulation (MCM)
strategy. Using MCM, the problem is converted into the search
for the optimal power spectral allocation for each user. The prob-
lem has applications in a series of currently interesting scenarios,
like ad-hoc (i.e. infrastructureless) networks, sensor networks and
multihop networks, in the preliminary phase where more mobile
terminals send their data to relay terminals simultaneously. The
problem has been tackled very recently, for example in [6], [2],
[3], [4], [9], [7]. In [2] it was proposed a centralized algorithm
that finds the power loading maximizing the weighted rate-sum in
the case of two active links numerically, under the assumption that
the objective function is convex. However, each user’s rate, in the
presence of interference is not a convex function of the powers for
any channel realizations . In [6], a sum-rate maximization prob-
lem with a weighted power sum constraint was solved. However,
the maximization of the sum-rate does not assure the maximiza-
tion of all rates in the sum and it does not prevent a user to get
a null rate. Therefore, there is no guarantee of optimality in the
solutions proposed in [6] and [2]. In [3], the difficult problem of
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finding the capacity region of a Gaussian interference channel was
studied in detail, but under the assumption of strong interference.
Unfortunately, this assumption is too restrictive and it does not fit
the setup of our problem. In this paper, we formulate the problem
as a true MOP and we propose: i) a centralized (optimal) algo-
rithm that reaches the Pareto optimal solutions of MOP for any
channel realizations, number Q of links S-D and power budget;
ii) a decentralized (suboptimal) algorithm, based on the idea of
Nash equilibrium (NE), that approaches the optimal solution with
negligible losses in situations of practical interest. We derive the
sufficient conditions that insure the NE to be unique and, finally,
we show how to modify the cost functions in order to make the
NE’s coincide with the Pareto optimal solutions.

2. SYSTEM MODEL AND PROBLEM FORMULATION

Throughout the paper, we use the following setup. Each user
transmits blocks of N symbols using linear precoding. We de-
note with s(n) the n-th block of information symbols and with
x(n) = F s(n) the corresponding transmitted block, where F is
an N × N full-rank matrix. All channels are FIR, time-invariant,
with maximum order L. We denote with hkl(n) the impulse re-
sponse between the k-th S and the l-th D. Two nodes S and D are
considered paired, when k = l. We append a cyclic prefix (CP)
of order L to each block to facilitate elimination of inter-block
interference (IBI) and channel equalization. We assume, without
any loss of generality, that the information symbols are uncorre-
lated with variance σ2

s , and that the receiver noise vector η(n) is
white Gaussian, with covariance matrix Cη = σ2

nI . All nodes
S transmit simultaneously. Assuming perfect synchronization and
no coordination1 among the S-D pairs, the N -size vector yk(n),
received by the k-th node D, after discarding the guard interval, is

yk(n) = HkkF ksk(n) +

Q∑
j=1, j �=k

H jkF jsj(n) + ηk(n), (1)

with k = 1, . . . , Q. Thanks to the insertion of the CP, Hkk is
an N × N circulant Toeplitz matrix with (i, j) entry hkk((i − j)
mod N)/rα

kk, where hkk(n) is the the channel impulse response;
we single out the distance rkk between the k-th S-D pair, because
it will be useful in our ensuing derivations to show the sufficient
conditions for the uniqueness of the Nash equilibrium. We assume
that the transmitted power propagates with an attenuation factor,
as a function of the travelled distance r, 1/r2α, with α ≥ 1. Since
no cooperation2 among pairs is allowed, the second term on the

1In this context, coordination means that encoding and/or decoding are
performed jointly among all the S’s and D’s.

2In practice, this assumption is reasonable, because the transmitter and
the receivers are physically separated.
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right-hand side of (1) represents the multi-user interference (MUI)
received by the k-th D node caused by the other active S-D links.
Therefore, the Q input-output relationships (1) can be modelled as
a Gaussian Interference Channel (GIC) with Q transmitters and Q
receivers. Our goal is to find out the coding matrices {F k}

Q
k=1

that maximize the information rates of all cooperating pairs S-D
jointly, subject to the constraint that each transmitter has a maxi-
mum power PT . The full characterization of the problem would
require the derivation of the capacity region (CR) of the GIC,
but this is still an open problem. Only partial results have been
achieved so far under the condition of strong interference (see e.g.
[3] and the references therein). However, in [3] it was necessary
to assume that the interference level had to be stronger than the
useful signal and this is not applicable to our case. Furthermore,
reaching the boundary of the CR would require some cooperation
among different pairs in their respective coding strategies. This
operation would be highly difficult to implement in a wireless in-
frastructureless network and it would require such a waste of re-
sources for signalling among all the nodes to make the resulting
rate maximization meaningless.
Thus, we approach the problem making the following assumption:
a1) no interference cancellation is performed at the receiver, so that
MUI is treated as additive colored Gaussian noise; a2) no cooper-
ation among different pairs is allowed. Thus, a sub-optimal3 dis-
tributed coding scheme is adopted, where the encoding/decoding
is performed from each pair independently and no multi-access
scheme is embedded in the codebook of each pair; a3) all channels
{Hkj}

Q
k,j=1 are perfectly known to all transmitters and receivers.

Only for the sake of simplicity, we also assume that a4) multi-
carrier modulation is performed from each pair, but no constraint
on the bandwidth that each pair may use, is imposed. The inter-
fering nature of the system makes inadequate the use of a single
figure of merit (e.g. the sum rate) to maximize the rates of all links
simultaneously, because increasing the rate of some link would in-
crease the interference on the other links and then decrease their
rates. Dealing with a multi-objective function, we have to define
what we mean by optimal vector. In this work, we adopt the Pareto
optimality criterion [1]. This means that indicating with Rk, the
information rate of the k-th link, with pk the set of powers allo-
cated by the k-th user over the available N sub-carriers, and with
D the domain of admissible powers, i.e. the set of values satis-
fying the power constraints, the solution p∗ := (p∗

1, . . . , p
∗
Q) is

Pareto-optimal iff it is Pareto-dominant, i.e. there does not exist
any other vector p := (p1, . . . , pQ) ∈ D, with p �= p∗, such that
Rk(p) ≥ Rk(p∗) for k = 1, 2, . . . , Q, with at least one of the
above inequalities satisfied in strict-sense.

Having established the optimality criterion, under a1)-a4) the
optimal tradeoff among the rates of all links can be found only by
solving the following multi-objective maximization problem

{p∗
1, · · · , p∗

Q} = argmax{R1, R2, . . . , RQ}, with

Rk=
1
N

∑N−1
i=0 log

(
1 + 1

Γ

|Hkk(i)|2pk(i)/rα
kk

σ2
n/σ2

s+
∑Q

j �=k
1

rα
jk

|Hjk(i)|2pj(i)

)
subject to σ2

s

∑N−1
i=0 pk(i) ≤ PT , k = 1, . . . , Q,

(2)
where Rk is computed as the maximum mutual information be-
tween the transmitted block xk(n) and the received block yk(n),

3Generally, the distributed encoding/decoding we have assumed is sub-
optimal, because in achieving the capacity of frequency-selective GIC,
even if the encoding/decoding process is performed independently, the
codebook of each user has to be generated jointly [3].

assuming the other received signals as additive noise; Hjk(i) are
the samples of the channel transfer function, i.e. Hjk(i) =

∑L
q=0

hjk(q) e−j2πiq/N ; pk(i) is the power allocated over the i-th sub-
carrier from the k-th S; pk := {pk(0), . . . , pk(N − 1)}∀k and Γ
denotes the SNR-gap that depends on the target error-probability,
the coding and the modulation scheme. The stars indicate the op-
timal solutions in the Pareto sense. The trade-off surface (with
respect to the componentwise inequality) in the objective space
of MOP4 represents the largest rate region (RR) achievable under
the given power constraint and the assumptions a1)-a4). Unfortu-
nately, the MOP maximization (2) is not convex, because the rates
are neither convex nor concave with respect to the power vectors.
Hence, the classical optimization techniques involving the maxi-
mization of weighted sum rate provides, in general, only a sub-
optimal solution.

3. CENTRALIZED SOLUTION

The largest RR achievable, under a1)-a4), can be found numer-
ically using the Normal-Boundary Intersection (NBI) algorithm,
proposed in [5]. The NBI provides the upper right boundary of
the objective feasible set of MOP (2) and the corresponding op-
timal power allocation. Note that if such a boundary is convex,
then all the points on the boundary are Pareto-optimal, otherwise
some of them could be dominated 5. However, to be implemented,
the NBI algorithm needs a centralized control with full knowl-
edge of all system parameters. After solving the MOP, the cen-
tral control unit has to transfer the optimal power allocation vec-
tors to all transmitters. Alternatively, a simpler iterative algorithm
based on a gradient descent method can be found reformulating
the MOP as a competitive non cooperative game, having the fol-
lowing structure G = (Ω, {Pk}k∈Ω, {Φk}k∈Ω, H , σ2

n, σ2
s

)
,

where Ω := {1, 2, . . . , Q} is the set of pairs indices; Pk is the
set of the admissible strategies (power distribution) for the k-th
player; Φk are the payoff functions (rates); the power distribution
pk := {pk(i)}N

i=1 ∈ Pk over the N available sub-carriers, sub-
ject to the power constraint PT = σ2

s

∑N
i=1 pk(i), represents the

game strategy for the k-th player. The game structure, i.e. the
channels H := {H ij}

Q
i,j=1 and the variances σ2

n and σ2
s are as-

sumed to be known to all players. Moreover, only pure strategies
are allowed. In such a game, each player competes with the oth-
ers in order to maximize its own payoff function Φk, regardless of
all other players. In this competition, if there exists a Nash Equi-
librium (NE), it means that there is an optimum strategy profile
p := (p1, p2, . . . , pQ) ∈ P := P1 × . . . × PQ such that, for
each pair, setting p−k := [p1, .., pk−1, pk+1, .., pQ], it has to be,
for all k ∈ [1, Q],

Φk(pk, p−k) ≥ Φk(pk, p−k), ∀pk �= pk ∈ Pk. (3)

The relationship between the solutions of MOP and the NE’s of
the game G is given by the following
Theorem 1. The Pareto Optimal (PO) solutions of MOP (2) are
the NE’s of the game G having the following pay-off functions

Φk(pk, p−k) = Rk(pk, p−k)+
1

λk

Q∑
j �=k=1

λj Rj(pk, p−k), (4)

4Note that, if the feasible set of the objective function in (2) is not
convex, not every point lying on the trade-off surface is globally Pareto-
optimal.

5The convex combination of the objective functions fails to obtain the
points lying on the non convex part of the trade-off curve.
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where λ ∈ R
Q with λ � 0, Rk(pk, p−k) is given by (2) and

k ∈ [1, Q].
Proof. It is straightforward to check that the global optimal solu-
tion of the following maximization problem

{p̄} = argmaxp∈P

Q∑
j=1

λj Rj(p), (5)

for any given λ � 0 is a point on the Pareto boundary of MOP. If
p̄ is an optimal solution of (5), it has to be

Q∑
j=1

λj Rj(p̄) ≥

Q∑
j=1

λj Rj(p), ∀p �= p̄. (6)

Setting p = (pk, p̄−k), (6) becomes

Rk(p̄k, p̄−k) + 1/λk

∑Q
j �=k=1 λj Rj(p̄k, p̄−k) ≥

Rk(pk, p̄−k) + 1/λk

∑Q
j �=k=1 λj Rj(pk, p̄−k)

⇐⇒ Φk(p̄k, p̄−k) ≥ Φk(pk, p̄−k), ∀k ∈ [1, Q],
(7)

where Φk(pk, p−k) := Rk(pk, p−k) +1/λk

∑Q
j �=k=1 λjRj(pk,

p−k). The last inequality in (7) defines the NE (see (3)) of the
game G

6. Thus, the Pareto boundary of MOP can be found by
computing the NE of the game G , provided that such a NE is
unique. For each choice of the weight vector λ � 0, we get a
(usually different) PO point of MOP. In [9] we derived the suffi-
cient conditions (SC) for the existence and uniqueness of the NE
in the game G , applying the conditions of [8] to the game G . Even
though we omit the derivations here for lack of space, we wish to
remark that the SC do not require the convexity of the objective
functions in (2). Building on the general iterative algorithm pro-
posed in [8], we propose an iterative algorithm based on gradient
descent method that, under the SC, is proved to converge to the
unique NE. Differently from NBI, that requires the computation
of the optimal solution to be performed on a central unit having
all the information, this algorithm could be implemented on each
node, but each node should have, at each iteration, knowledge of
the (partial) results achieved by all other nodes. Therefore, also in
this case, it is necessary to have a high degree of signalling among
all the nodes.

Before concluding this section , it is worth pointing out that the
SC derived in [9] are only sufficient, i.e. a unique NE for G might
exist even if they are not met. Experimentally, we have found that
the above algorithm has always converged to the same optimal so-
lutions, regardless of the SC, the channels and the power budgets
for each pair. However, even if the proposed algorithm can be per-
formed iteratively among the pairs, at each step, each link has to
know the channels, the rates and the power allocations of all the
other links.

4. DECENTRALIZED STRATEGIES

The globally optimal solutions of the MOP seen before can be
reached only if a centralized system having full knowledge of the
system is available or if the nodes exchange their partial results.
Either way, these solutions are not attractive for an ad-hoc network.
Hence, a more practical and interesting problem to solve is the si-
multaneous rate maximization of the active links requiring mini-
mum centralized control and minimum (possibly null) exchange
among the sources. To this end, here we approach (2) introducing

6Note that, thanks to our approach based on a game theory framework,
we are able to find the global solutions of (5), without requiring the con-
vexity of the objective function.

the following additional constraint: a5) no source is allowed to
know rate, channel transfer functions and power allocation of the
other links. Each node S is assumed to know only its own channel
and the covariance matrix Cwk

of the interference arriving at its
own D node. Under such a constraint, the optimal solution is the
stable operation point where each link has maximized its own rate,
with all others viewed as additive colored noise. In formulas, the
optimal powers are the solutions of the following maximization
problems

{p̄k} = argmaxpk∈Pk

{
Rk(pk, p−k)

}
, ∀k ∈ [1, Q]. (8)

From (3) and (8), it follows that the solutions of (8) are the NE’s of
a strategic non-cooperative game G̃ = (Ω, {Pk}k∈Ω, {Rk}k∈Ω,

{Cwk
}Q

k=1

)
, where each player (link) competes against the oth-

ers to maximize only its own information rate Rk (pay-off func-
tion), under a power constraint. In [9] we proved the following
Theorem 2. Given the game G̃ , there exists at least one stable NE.
If the following conditions hold true

rα
ij > rα

ii(Q−1)
[
max

k

{
|Hij(k)|2/|Hii(k)|2

}]
, ∀i, j ∈ [1, Q],

(9)
then the NE of G is unique.
Interestingly, expression (9) has a physical interpretation: In order
to assure the uniqueness of the competitive equilibrium, a mini-
mum distance between the cooperating pairs has to be guaranteed.
Such a distance corresponds to the maximum level of interference
that may be tolerated by each pair and, as we expected, it de-
pends on i) the number Q of pairs; ii) the distance rii between
the S and D in each pair; and iii) the worst ratio max

k

{
|Hij(k)|2/

|Hii(k)|2
}

between the channel transfer function of all interfer-
ence links and the channel transfer function of direct link.
Note that, directly from the definition of NE (3), it follows that
Rk(pk, p−k) = maxpk

Rk(pk, p−k) ≥ maxpk
minp−k

Rk(pk,

p−k), which means that, if a5) is introduced, each link, differently
from (4), is able to maximize, at least, its worst rate. Generally,
these rates are Pareto dominated by the solutions of MOP (i.e the
NE’s of G ). However, if (9) holds true, the unique NE of G̃ cor-
responds to the best rates achievable under a5) and for the given
power budget.
A simpler distributed algorithm that reaches the NE can be ob-
tained as follows. From the definition of NE, we deduce that, for
each NE, the optimal power allocation strategy for every player
of the game G̃ , must be the water-filling power distribution over
the available sub-carriers subject to the power constraint PT and
regarding the interference due to the other players as additive (col-
ored) noise. Hence, the power allocation reaching one NE must be
solution of the following system of implicit equations

pk(i) =

(
1

µk
−

σ2
n+σ2

s

∑Q
j �=k

|H̃jk(i)|2pj(i)

σ2
s |H̃kk(i)|2

)+

,

1
µk

=
PT +

∑
i∈Ik

σ2
n+σ2

s

∑Q
j �=k

|H̃jk(i)|2pj(i)

σ2
s |H̃kk(i)|2

Nk
, i ∈ Ik, k ∈ Ω,

(10)
where Ik is the set of sub-carriers allocated for the k-th pair and
Nk the cardinality of Ik. Since the game G̃ admits at least one
stable NE, the existence of a simultaneous water-filling solution
(10) is guaranteed. It follows that an iterative procedure among
the players (S-D links), where at every step, each player performs
the single-user water-filling power distribution (10), regarding the
interference from the other players as noise, if it converges, it has
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Fig. 1. Rate region achieved for rij/rii = 2, 3, 5 by i) NBI algorithm
(red dashed curve); ii) IWFA (blue dotted curve); iii) GTA (square points).

to converge to one of the stable NE’s, from any starting point. If
conditions (9) hold true, the iterative water-filling algorithm al-
ways converges to the unique NE [4], [10].
Comparing the payoff functions of the games G and G̃ , an inter-
esting interpretation arises: the “socially” optimum of rate maxi-
mization can be achieved only if all players cooperate to find out
the power allocation strategies. In fact, all the players in the game
G maximize individually the same pay-off function (4). Pursuing
an individual optimum provides a worse rate for all the players,
instead. In the next section we quantify this rate loss.

5. PERFORMANCE AND CONCLUSIONS

We compare now the different centralized and decentralized solu-
tions. We have simulated our algorithms using the following setup.
The number of active links is Q = 2. The size of each transmitted
block is N = 32; the channels are simulated as FIR filters of or-
der L = 6, whose taps are iid complex Gaussian random variables
with zero mean and unit variance; the additive noise ηr(n), for
r = 1, 2 is assumed to be drawn from a complex white Gaussian
random process with zero mean and variance σ2

n, for each compo-
nent. For the sake of simplicity, we have assumed also rii = rjj

and rij = rji for all i, j = 1, 2. In Fig.1 we report the achievable
RR associated with the optimal power control algorithm based on
NBI (red dashed curve) and IWFA (blue dotted curve), obtained
under a total power constraint PT , with PT /σ2

n = 20 dB and
for the ratios rij/rii = 2, 3, 5. On the boundary of the opti-
mal RR, we have drawn some points obtained by using the algo-
rithm based on the game theory approach (call it GTA). We report
also the points obtained by GTA when the SC’s are not satisfied.
From Fig. 1, we infer that: i) the rates reached by IWFA are very
close to the optimum, also in the case of high level of interference;
ii) GTA converges to the optimal points also if the SC’s are not
met. We have pointed out that, if IWFA converges, the final NE
is not, in general, a global optimum of (2). In order to quantify
this rate loss, we introduce the normalized sum-rate ratio, defined
as SRNE/SRPO , where SRNE denotes the sum-rate reached by
IWFA for a given channels set, whereas SRPO is the maximum
available sum-rate achievable by using the algorithms NBI and
GTA. In Fig.2, we report the ratio SRNE/SRPO , averaged on
100 independent channel realizations in case of two cooperating
S/D pairs using the same transmit power, as a function of rij/rii,

2 4 6 8 10 12 14 16
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Fig. 2. Sum-rate ratio SRNE/SRPO vs. rij/rii, for i) SNR= 5dB

(blue dashed curve); ii) SNR= 15dB (red dotted curve).

for SNR := σ2
s/σ2

n = 5 dB (blue dashed curve) and SNR = 15
dB (red dotted curve). Experimentally, we have found that the al-
gorithms have always converged to the same value, regardless of
SC’s, and the channels and the power budgets for each pair. In-
terestingly, the rate loss is negligible as soon as rij/rii > 2. In
summary, in this paper we have proposed and compared central-
ized and decentralized power control algorithms for meshed wire-
less networks. The centralized algorithm is optimal in the sense
that enlarges the RR reached by the existing algorithms and pro-
vides the largest RR achievable, under the assumptions a1)-a4).
From the comparison between the centralized and the decentral-
ized IWFA algorithm, we have shown that IWFA achieves solu-
tions very close to the optimum (with a rate loss less than 1%).
Since IWFA can be implemented with a minimal centralized con-
trol and with a controlled convergence speed, IWFA appears to be
a choice to be preferred to any other centralized algorithm.
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