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ABSTRACT

For ad hoc mobile networks, parallel wireless relays with space-
time modulation have recently been discovered, and their poten-
tial to increase network capacity has been found to be significant.
In this paper, we provide an analytical study of the diversity fac-
tor achievable by two relays with orthogonal space-time modula-
tion. Unlike two transmitters or two receivers in the conventional
MIMO setting for which the averaged bit error rate (BER) is pro-
portional to 1/SNR2, the averaged BER of two relays is shown to
be proportional to ln(SNR)/SNR2. This insight explains a dif-
ference between the diversity of multiple relays and the diversity
of multiple receivers/transmitters. A switching scheme applied to
two relays is also analyzed.

1. INTRODUCTION

For outdoor none-line-of-sight mobile communications, the wave-
length must not be too small and the conventional antenna arrays
may not be applicable for mobile users. For example, with car-
rier frequency below 900 MHz, only a single antenna is generally
possible for most mobile users. The conventional architecture de-
signed for ad hoc mobile networks only allows communications
on a node-to-node basis where there is no antenna diversity to
conquer small scale fading. When two nodes communicate with
each other, all other nodes in a neighborhood of the two nodes
are muted (i.e., stopped from transmission) by the current ad hoc
protocols to avoid interference. This can be a waste of resources
because researchers have recently discovered that mobile nodes in
a neighborhood of the source and the destination can jointly par-
ticipate in the data transmission. The cooperation of mobile nodes
may result in an improved capacity [7], [2], [3], [9], [11], [6], [5].
A study on wireless relays with space-time modulations further
discovered that more than 10 dB power saving is achievable by us-
ing only eight relays, and a (conservative) empirical value of the
diversity factor (in terms of bit error rate) achievable by r relays is
about r/2 [6], [5].

In this paper, we report an analytical insight into wireless re-
lays with space-time modulation. In particular, we show a diver-
sity analysis of two relays with orthogonal space-time modulation.
Our analysis concludes that the diversity factor of two relays is
governed by

d = 2 − ln[ln(SNR)]/ ln(SNR)
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instead of d = 2. This diversity factor is different from that for two
receivers/transmitters, which reveals a distinction between multi-
ple relays and multiple receivers/transmitters. In other words, the
theory developed for MIMO systems with space-time modulation
is not directly transportable to relays. Mobile relays with space-
time modulation commands a new branch of theory on space-time
processing.

Also included in our analysis is a simple switching scheme
applied at the relays. We show that such a simple scheme can lead
to a further reduction of bit-error-rate(BER).

The paper is organized as follows. In section 2, we provide a
brief review of two relays with orthogonal space-time modulation,
and express the conditional BER at the destination served by the
two relays. In section 3, we sketch a derivation of the closed-
form expression of the BER averaged over the small scale fading.
In section 4, we provide the diversity analysis. In section 5, the
performance of the switching scheme is illustrated. Finally, section
6 concludes the paper.

2. CONDITIONAL BER AT THE DESTINATION
ASSISTED BY RELAYS

We assume two relays assisting a source and a destination. Each of
the two relays estimates two consecutive symbols, s(1) and s(2),
transmitted from the source, applies orthogonal space-time modu-
lation to the two symbols, and then forwards the space-time mod-
ulated symbols to the destination. The relays concurrently exe-
cute the above operations, and no symbols are exchanged between
them. More specifically, the output symbols of the two relays are
defined as:

�
x1(1) x2(1)
x1(2) x2(2)

�
=

�
s1(1) −s2(2)∗

s1(2) s2(1)∗

�
(1)

where xi(j) is the jth symbol output from the ith relay, and si(j)
is the jth symbol received by ith relay. The symbols received by
the relays are modelled as si(j) = ais(j) + ni(j) where ai is the
small scale fading factor between the source and the ith relay and
ni(j) is the complex white Gaussian noise of variance σ2

n. The
structure in (1) resembles the Alamouti code [1].

The received symbols at the destination can be described as:

y(j) =
2�

i=1

bixi(j) + v(j) (2)
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or equivalently,

�
y(1)
y(2)∗

�
=

�
b1a1 −b2a

∗
2

b∗2a2 b∗1a
∗
1

��
s(1)
s(2)∗

�
+

�
b1n1(1) − b2n2(2)∗

b∗1n1(2)∗ + b∗2n2(1)

�
+

�
v(1)
v(2)∗

�

(3)

where bi is the small scale fading factor between the ith relay
and the destination. v(i) is the additional complex white Gaussian
noise of variance σ2

v at the destination. In (3) the coefficient matrix
of the original symbol vector is complex orthogonal and the last
two noise terms are white and of the variance σ2

n

�2
1 |bi|2 + σ2

v .
An optimal detection of each symbol at the destination can

be based on each individual component of the following sufficient
statistics:

�
r(1)
r(2)∗

�
=

�
b1a1 −b2a

∗
2

b∗2a2 b∗1a
∗
1

�H �
y(1)
y(2)∗

�
(4)

The error rate is governed by the SNR of this statistics. If the
relays are close to the destination, then the following approxima-
tion may hold:

σ2
n

2�
i=1

|bi|2 + σ2
v ≈ σ2

n

2�
i=1

|bi|2 (5)

Therefore, the SNR of r(j) is given by the following expres-
sion:

SNRI = SNR0

�2
i=1 |ai|2|bi|2�2

i=1 |bi|2
(6)

where SNRI is the (instantaneous) SNR conditional upon the
small scale fadings, SNR0 is a nominal SNR. All of ai and bi are
assumed to be i.i.d circular complex Gaussian random variables
with unit variance.

We now add a generalization based on switching, i.e, at the ith

relay, |ai|2 is compared with a predetermined threshold T . If the
threshold is exceeded, the relay is left open. Otherwise, the relay
is turned off. In other words, ai is multiplied by gi defined as:

gi =

�
1, |ai|2 ≥ T ;
0, |ai|2 < T .

(7)

Then, the conditional SNR at the destination is

SNRI = SNR0

�2
i=1 |ai|2gi|bi|2�2

i=1 gi|bi|2
(8)

Note that g = [g1, g2]
T is a function of the random variables a1

and a2 and the threshold T .
Assume that each symbol comes from the QPSK constellation

and the noise is white Gaussian. Then, the conditional BER of an
optimal symbol detector is known to be

BER(a, b) = Q(
√

SNRI |a, b)

where Q(.) is the Gaussian Q-function [8].

3. CLOSED-FORM EXPRESSION OF THE AVERAGED
BER

We now sketch a derivation of the closed-form expression of the
averaged BER by following three steps. In the first step, we derive
BER(T |b, g), which is the averaged BER respect to a but con-

ditional upon b and g. In the second step, we derive BER(T |b),
which is the average of BER(T |b, g) with respect to g conditional

upon b. Finally, we consider the average of BER(T |b) with re-
spect to b.

3.1. Expression of BER(T |b, g)

We denote βi as |ai|2 conditional upon gi = 1. Therefore proba-
bility density function(PDF) of βi is

p(βi) = exp(−βi) exp(T )

with βi ≥ T .

With the help of (4.2) in [13]:

Q(x) =
1

π

� π/2

0

exp(
−x2

2 sin2 θ
) dθ

and (3.466.1) in [4]:

� +∞

0

exp(−u2x2)

x2 + β2
dx = (1 − erf(uβ))

π

2β
exp(u2β2)

�(β) > 0; | arg(u)| < π/4

where erf(x) is the standard Gaussian error function, we can
show that:

BER(T |b, g = [1, 1]T )

= Eβ [Q(

�
SNR0

�2
i=1 βi|bi|2
�2

i=1 |bi|2 )]

= Eβ [ 1
π

� π/2

0
exp(−SNR0

�2
i=1 βi|bi|2
�2

i=1 |bi|2
2 sin2 θ

) dθ]

= 1
π

� π/2

0
1

SNR0
|b1|2

2
�2

i=1 |bi|2 sin2 θ
+1

1

SNR0
|b2|2

2
�2

i=1 |bi|2 sin2 θ
+1

exp(−SNR0
T

2 sin2 θ
) dθ

= 0.5 exp[T (1+r)]

(r−1)
√

2αr+2α+1
[1 − erf(

�
T (1 + r + 0.5α−1))]

+0.5[1 − erf(
√

0.5Tα−1)] − 0.5
r−1

r1.5 exp[T (1+r−1)]√
2α+(2α+1)r

×[1 − erf(
�

T (1 + r−1 + 0.5α−1))] (9)

where r and α are

r = | b1

b2
|2 and α = SNR−1

0 (10)
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Similarly, we can show that:

BER(T |b, g = [1, 0]T )

= BER(T |b, g = [0, 1]T )

=
1

π

� π/2

0

1

SNR0
1

2 sin2 θ
+ 1

× exp(−SNR0
T

2 sin2 θ
) dθ

= 0.5(1 − erf(
√

0.5Tα−1)) −
0.5 exp(T )√

1 + 2α
(1 − erf(

�
T (0.5α−1 + 1))) (11)

When g = 0, both relays are turned off and hence BER is 0.5
obviously.

3.2. Expression of BER(T |b)

BER(T |b)
= Eg[BER(T |b, g)]

= BER(T |b, g = [1, 1]T )P (g = [1, 1]T ) +

2BER(T |b, g = [0, 1]T )P (g = [0, 1]T )

+0.5P (g = [0, 0]T ) (12)

Based on (9), (11), (12) and P (gi = 1) = exp(−T ), we can
obtain a close form of averaged BER only conditional upon b.

When T = 0, the corresponding BER is

BER(T = 0|b) = 0.5 − r

2(r − 1)
√

2αr−1 + 2α + 1

+
1

2(r − 1)
√

2αr + 2α + 1
(13)

3.3. Expression of BER(T )

Averaging BER(T |b) with respect to b is the same as averaging
with respect to r since the scaling on b does not change SNR or
BER, i.e, BER(T |b) = BER(T |r). According to (10), the PDF
of r is a F (2, 2) distribution which is (r + 1)−2 [10]. Therefore,
the final averaged BER is

BER(T ) =

� +∞

0

BER(T |r)(r + 1)−2 dr (14)

When T = 0, (14) becomes

BER(T = 0) = B1 + B2 (15)

where

B1 = 0.5 +
ln(

√
2α + 1 +

√
4α + 1)

2
√

4α + 1

+(α − 0.5) ln(1 +
√

2α + 1) − 0.5
√

2α + 1

B2 = − (4α + 1)−0.5 + 2α − 1

4
ln(2α)

4. DIVERSITY ANALYSIS

When r → 0, the limit of (13) is

BER(T = 0|r = 0) = 0.5[1 − (2α + 1)−0.5] ∼ 0.5α

where the approximation holds for α � 1. This equation implies
a diversity factor equal to 1, which is expected (since there is only
one effective relay when r → 0). We can prove that BER(T =
0|r) achieves its minimum when r = 1, and the minimum is

BER(T = 0|r = 1)

= − α

(4α + 1)3/2
+ 0.5 − 0.5√

4α + 1

∼ 3α2 (16)

This equation implies a diversity factor 2, which is also expected
[12] (since the two relays are equivalent to two receivers when
r = 1). From the above two extreme cases, we can expect that the
average of BER(T = 0|r) over r should have a diversity factor
less than 2.

To prove the above prediction, we simply need to consider
(15). We first observe that

B1 ∼ 0.5α2

B2 ∼ 6α2 ln(0.5α−1)

Therefore, if ln(α−1) � 1, then

BER(T = 0) ∼ 6α2 ln(α−1)

Then, we can show that the diversity factor (i.e., the slope of the
BER curve) is

d(α) � − ln(BER(T = 0))

ln(α−1)

∼ − ln(ln α−1) − 2 ln α

ln α−1

= 2 − ln(ln SNR0)

ln SNR0
(17)

It is noted that the diversity factor is generally less than 2 and ap-
proaches 2 only when the SNR is extremely large.

5. OPTIMAL SWITCHING

The optimal value of the threshold T is hard to find since it must
minimize (14). Here we consider the following choices of the
threshold:

T0 = SNR−1
0 exp(−SNR−1

0 )

T1 = SNR−1
0

T2 =
22×R − 1

SNR0

where T2 mimics a threshold given in [7] (here R = 1), T1 differs
from T2 by a constant factor, and T1 is equivalent to T0 for large
SNR.

We compare the following two ratios versus r in Figure 1:

γ(T1|r) � BER(T = T1|r)
BER(T = 0|r)

IV - 563

➡ ➡



and

γ(T0|r) � BER(T = T0|r)
BER(T = 0|r)

We only need to consider r = 1 → +∞ since the other part for
r = 0 → 1 is symmetric. The figure shows that T0 keeps the ratio
less than 1 for all SNR0 and all r. T1 works poorly only for very
small SNR0 that are not of practical interest.

In Figure 2, We provide numerical results of (14) with four
different choices of the threshold. The four thresholds are T = 0,
T = T0, T = T1 and T = T2. We can see that T0 is the best
among the four.

6. CONCLUSION

We have presented an analytical study of the diversity factor of two
relays with orthogonal space-time modulation. Our result suggests
that the diversity notion developed for multiple receivers/transmitters
is not directly applicable to multiple relays. For two relays with or-
thogonal space-time modulation, the diversity factor is

2 − ln[ln(SNR)]/ ln(SNR)

instead of 2. We have also considered a switching scheme em-
bedded in the space-time modulation, which further reduces the
averaged BER.
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Fig. 1. γ(T |r) versus r. SNR0 = 0, 5, 10, 20 db.
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