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ABSTRACT

We consider the problem of multiuser opportunistic fair transmis-
sion scheduling (OFS) in power-controlled CDMA systems. OFS
is an important technique in wireless networks to achieve fair and
efficient resource allocation. Power control is an effective resource
management technique in CDMA systems. Given a certain user
subset and the channel states, the optimal power control scheme
can be calculated. The multiuser OFS problem then refers to the
optimal user subset selection at each interval to maximize instan-
taneous system throughput subject to some fairness constraint. We
propose discrete stochastic approximation algorithms to adaptively
select user subsets with the maximal system throughput. We also
consider the time-varying channel scenarios where the algorithm
can track the time-varying optimal user subset. We present simu-
lation results to show the performance of the proposed algorithms
in terms of the throughput optimization, the fast convergence, the
excellent time-varying tracking capability, and the fairness.

1. INTRODUCTION

Opportunistic fair transmission scheduling (OFS) is an important
resource management technique in wireless networks [1, 2, 3]. It
aims at balancing two conflicting goals, fairness and utilization
of resource, and thus, in general, a tradeoff is needed. Most of
the existing works treat the single user scheduler [1, 2]. In [3],
an multiuser scheduler is proposed and a general framework is
presented based on [1, 2]. Note that, instead of incorporating
the physical-layer constraints and implementation details, perfect
channel knowledge is assumed and simplified models are em-
ployed in the above approaches. Specifically, in [2], the physical-
layer condition for each user is captured by a single value of
channel-dependent metric; in [3], it is described by a per bit power
cost for certain signal-to-interference-plus-noise ratio (SINR).

Power control is an effective resource management technique
in CDMA systems. SINR-based power control (SBPC) aims at
eliminating the near-far effects by balancing the SINRs of the
users. Several approaches have already been developed [4, 5, 6, 7].

Note that the optimal power control scheme can be calculated
for each user subset. The multiuser OFS problem then refers to
the optimal user subset selection at each scheduling interval to
maximize the instantaneous system throughput subject to the fair-
ness constraint. Straightforward implementation of the user sub-
set selection suffers from several problems in practice. One is
the high computational complexity, for the number of candidates
is normally large. Another problem is that the perfect channel
knowledge is not available. In addition, when the channel is time-

varying, the algorithm should be able to track the time-varying
optimal user subset. In this paper, we propose discrete stochastic
approximation algorithms to achieve the optimal user subset selec-
tion. The approach is based on the advanced stochastic optimiza-
tion techniques [8, 9], which has recently been applied to solve
some other problems in wireless communications [10]. The algo-
rithm optimizes the performance metric over a set of user subsets,
where the performance metric cannot be analytically evaluated but
can be estimated using noisy channel observations. Moreover, it
adopts a fixed step-size so that the time-varying optimal user sub-
set can be adaptively tracked.

The remainder of this paper is organized as follows. In
Section 2, the OFS architecture and the signal model of power-
controlled CDMA systems are described, and the user subset se-
lection is formulated as a discrete stochastic optimization problem.
Section 3 presents the discrete stochastic approximation algorithm,
and then the optimal throughput scheduler for power-controlled
CDMA systems is proposed. Moreover, the time-varying user sub-
set tracking algorithm is developed. Simulation results are given
in Section 4, and Section 5 contains the conclusions.

2. SYSTEM DESCRIPTIONS

2.1. Multiuser Opportunistic Fair Transmission Scheduling

Figure 1 shows the generalized OFS architecture [3], which con-
sists of a scheduler and a controller. The scheduler chooses a num-
ber of users at each interval to maximize the weighted instanta-
neous system throughput. The controller guarantees the fairness
among the users by adjusting the weights of the users.
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Fig. 1. Generalized architecture of OFS.

Suppose that there are totally N users in the system. At
each scheduling interval i, the inputs to the scheduler are the data
flows, the channel conditions {h1(i), · · · , hN (i)}, and the weights
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w(i) = [w1(i), · · · , wN (i)]T . Denote θ as a user subset and |θ| as
the number of users in θ. Let Θ be the set of all possible user sub-
sets. DenoteHθ(i) as the channel set of the users in θ and x(i) =
[X1(i), · · · , XN (i)]T ≥ 0 as the instantaneous rates of the users.
Define the objective function Φ(Hθ(i)) ,

P
n∈θ wn(i)Xn(i) as

the instantaneous total weighted rate for θ. Then the user subset
selection is formulated as the discrete optimization problem

θ∗(i) = arg max
θ∈Θ

Φ(Hθ(i)) = max
θ∈Θ

X
n∈θ

wn(i)Xn(i), (1)

where θ∗(i) denotes the optimal user subset for the interval i.
For the controller, the inputs at each interval i are the through-

put priorities of the users ψ = [ψ1, · · · , ψN ]T and x(i). The de-
terministic fairness constraint is given by [3] ψ1

E{X1(i)} = · · · =
ψN

E{XN (i)} . Define y(i,w(i)) , ψPN
j=1 ψj

− x(i,w(i))PN
j=1 Xj(i,w(i))

,

where x(i,w(i)) denotes the decision under givenw(i). To guar-
antee the fairness constraint, w(i) is then updated by [2, 3]

w(i + 1) = w(i) + ν(i)y(i,w(i)), (2)

where ν(i) = 1
i

is the step-size.

2.2. Discrete Stochastic Optimization Formulation

Henceforth, it is assumed that Hθ(i) and w(i) remain fixed for
each i. For notational simplicity, we then drop the index i. Note
that in practice, the channels in Hθ are estimated and thus noisy.
Denote {Ĥθ(m), m = 1, 2, · · ·} as a sequence of the noisy es-
timates of Hθ . For each Ĥθ(m), we can compute φ(m, θ), the
corresponding estimate of Φ(Hθ). Then we obtain the sequence
{φ(m, θ), m = 1, 2, · · ·}. If each φ(m, θ) is an unbiased esti-
mate of Φ(Hθ), the problem (1) can then be reformulated as the
following discrete stochastic optimization problem

θ∗ = arg max
θ∈Θ

Φ(Hθ) = arg max
θ∈Θ

E {φ(m, θ)} . (3)

2.3. Signal Models of Power-controlled CDMA Systems

We consider the power-controlled CDMA systems employing
matched-filter receivers in this paper. Suppose that there are K
users in a chosen user subset θ. Denote p = [P1, · · · , PK ]T

as the transmit powers, {h1, · · · , hK} as the path gains, and
[N1, · · · , NK ] as the spreading gains. Denote η as the noise power
in uplink cases, and η = [η1, · · · , ηK ]T as the noise levels in
downlink cases. Then the received SINR of user k is given by [4]8<: SINRUL

k = γUL
k = NkPkhkPK

l=1,l�=k
Plhl+η

,

SINRDL
k = γDL

k = NkPkhkPK
l=1,l�=k

Plhk+ηk
.

(4)

3. ADAPTIVE USER SUBSET SELECTION IN
POWER-CONTROLLED CDMA SYSTEMS

3.1. Discrete Stochastic Approximation Algorithm

One method for solving (3) is the exhaustive search of all possi-
ble user subsets, which can in principle find the optimum solution.
However, it is highly inefficient in the sense that most computa-
tions are useless and only those corresponding to the optimal one
are eventually useful. Moreover, if the channels are time-varying,

such scheme cannot track the time-varying optimal user subset.
We now present the discrete stochastic approximation algorithm
for solving (3) [8, 9]. which has high computational efficiency in
the sense that most of the computational cost is spent close to θ∗.
We use the unit vectors {e1, · · · , e|Θ|} to denote all |Θ| possible
subsets. Denote θ(m) as the subset visited at the m-th iteration.
We map the subset sequence {θ(m), m = 1, 2, · · ·} to the unit
vector sequence {D(m), m = 1, 2, · · ·}, where D(m) = ej if
θ(m) = θj . At each iteration m, the algorithm updates the state oc-
cupation probability π(m) = [π(m, 1), · · · , π(m, |Θ|)]T , where
π(m, j) ∈ [0, 1] and

P|Θ|
j=1 π(m, j) = 1. The discrete stochastic

approximation algorithm is then summarized as follows.
Algorithm 1 [User subset selection]

(a) Initialization: m ⇐ 1; randomly select θ(m) ∈ Θ,
and θ̂(m) ⇐ θ(m); set π(m) by π(m, θ(m)) = 1, and
π(m, θ) = 0 for all θ �= θ(m).

(b) Sampling and evaluation: Given θ(m), obtain
Ĥθ(m)(m); calculate φ(m, θ(m)); uniformly choose
θ̃(m) ∈ Θ \ θ(m); compute φ(m, θ̃(m)).

(c) Acceptance: If φ(m, θ̃(m)) > φ(m, θ(m)), then set
θ(m+1) = θ̃(m); otherwise set θ(m+1) = θ(m).

(d) Update the state occupation probabilities: π(m+1) =
π(m)+µ(m+1)[D(m+1)−π(m)], where µ(m) = 1

m
.

(e) Update the estimate of the optimizer: If π(m +

1, θ(m+1)) > π(m+1, θ̂(m)), then set θ̂(m+1) = θ(m+1);
otherwise set θ̂(m+1) = θ̂(m).

(f) m ⇐ m + 1, and go to step (b).

The sequence
n

θ(m), m = 1, 2, · · ·
o

is a Markov chain on

the state space Θ, and in general is not expected to converge.
In Step (d), π(m) = [π(m, 1), · · · , π(m, |Θ|)]T denotes the
empirical state occupation probability of the Markov chain at
the m-th iteration, and thus, Step (e) is equivalent to θ̂(m) =
arg maxθ π(m, θ). Hence the algorithm essentially chooses the
state most frequently visited by the Markov chain. The sequence
{θ̂(m), m = 1, 2, · · ·} contains the estimates of θ∗. Under certain
conditions, θ̂(m) → θ∗ almost surely as m → ∞, or equivalently,
the Markov chain spends more time in θ∗ than in any other state.

3.2. Multiuser Scheduler for Throughput Maximization

Uplink SINR-based Power Control Scheme

Denote γmin
k as the minimal SINR request and Pmax as the maxi-

mal transmit power for each user k. One optimization strategy for
the uplink SBPC is to find the power set to balance the achievable
SINR ratios among all users. That is, the SINR balancing problem,

max
p

min
1≤k≤K

γUL
k (p)

γmin
k

, with Pk ≤ Pmax, γUL
k ≥ γmin

k . (5)

Let α , γk

γmin
k

, 1 ≤ k ≤ K, be a balanced SINR ratio. The opti-

mal power set p∗ = [P ∗
1 , · · · , P ∗

K ]T to achieve α can be obtained
via an iterative process [6], where each user k adjusts its power
at the n-th iteration by Pk(n) = min{Pmax, γk

Pk(n−1)

γUL
k

(n−1)
}.

For solving (5), we start with a small α and obtain p∗. If
maxk{P ∗

k } < Pmax, increase α by a small factor, and then com-
pute the corresponding p∗. The above process is repeated until
|maxk{P ∗

k } − Pmax| is sufficiently small [6].
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Downlink SINR-based Power Control Scheme

Denote PT as the maximal transmit power at the base station. The
downlink SINR balancing problem is formulated as

max
p

min
1≤k≤K

γDL
k (p)

γmin
k

, with

KX
k=1

Pk ≤ PT , γDL
k ≥ γmin

k . (6)

Denote p∗
DL and α∗

DL ,
γDL

k (p∗
DL)

γmin
k

as the solution to (6). Define

γmin , diag(γmin
1 , · · · , γmin

K ), N , diag(N1, · · · , NK), h ,
diag(h1, · · · , hK), 1 , [1, · · · , 1]T and

A ,
"

γminN−1(B − I) γminN−1h−1η
1T

γminN−1
(B−I)

PT

1T
γminN−1h−1

η
PT

#
,

where B is the K × K matrix whose elements are all one.
Let λ̃ and p̃ , [P̃1, P̃2, · · · , P̃K+1]

T be the maximal eigen-
value and the corresponding eigenvector of A. Then we have

p∗
DL = [P̃1,···,P̃K ]T

P̃K+1
and α∗

DL = 1/λ̃ [5].

Maximal Instantaneous System Throughput Scheduler

Denote α(θ) as the optimal achievable SINR ratio for θ. For each
k ∈ θ, Xk , log(1 + γmin

k α(θ)) is defined as its achievable rate.
Then Φ(Hθ) is the instantaneous weighed system throughput for
each θ with α(θ) ≥ 1. Note that θ with α(θ) < 1 is an infeasible
one. Define gk , 1/(1 + Nk/γmin

k ) for each user k ∈ θ, and
gθ ,

P
k∈θ gk for θ [4]. For the uplink case, θ is feasible if

gθ ≤ mink∈θ{1 − gkη
hkPmax

} [7]. For the downlink case, θ is

feasible if gθ ≤ 1− 1
PT

P
k∈θ gkηk/hk [4]. Note that Algorithm 1

only treats the feasible user subsets as the candidates. Specifically,
for each θ̃(m) in Step (b), we first evaluate its feasibility, and only
if it is feasible, we continue with the other steps.

3.3. Adaptive Algorithm for Time-varying Channels

Under the static channel condition, a decreasing step-size is em-
ployed in Algorithm 1, µ(m) = 1/m. With such an approach,
the method gradually becomes more and more conservative as
the number of iterations increases. Whereas, in the time-varying
channel case, we need such a step-size that moving away from
a state is permitted when the optimal user subset changes [10].
Hence, Step (d) in Algorithm 1 is replaced by π(m + 1) =
π(m) + µ [D(m + 1) − π(m)], where µ is a fixed step-size sat-
isfying 0 < µ ≤ 1. The fixed step-size introduces an exponential
forgetting factor of the past occupation probabilities and allows to
track the slowly time-varying optimum user subset.

4. SIMULATION RESULTS

Throughput maximization with fast convergence

We first show the performance of Algorithm 1 in terms of through-
put maximization with fast convergence. The simulation con-
ditions are as follows. The number of users is N = 10; the
spreading gains are Nk = 128; the AWGN is 5 × 10−12W;
Pmax = 1W and PT = 5W; γmin

k = 10dB and 6dB for uplink
and downlink cases, respectively. The path gain of each user k is
hk(dk) = hk(d0) − 10n0 log10(

dk
d0

) dB, where dk is its distance
from the base station; h(d0) = h(100m) = −80dB; and n0 = 4.

We assume the estimated channel as ĥk = hk(1 + �h), where
�h ∼ N (0, 0.1). Note that the weights in w are all set as 1. The
path gains for all users are fixed for all simulation runs. Figure 2
shows the total rate of the chosen subset versus the iteration num-
ber for the uplink SBPC case, and Fig. 3 shows the similar results
for the downlink case. The results obtained over the single simula-
tion run, the averaged results over 100 runs and the optimal results
obtained via the exhaustive searches are all shown. It is seen that
the algorithm can converge to the best user subset, and can quickly
lock on a user subset with high system throughput.
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Fig. 2. The total rate of the chosen user subsets versus the iteration
number: uplink scheme, fixed channel case.
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Fig. 3. The total rate of the chosen user subsets versus the iteration
number: downlink scheme, fixed channel case.

Time-varying optimal user subset tracking

Next, we show the tracking capability of the algorithm in time-
varying channels. Suppose that the channels for all users keep
fixed within τ = 600 iterations. The distance for each user
k is assumed as dk(t) = β1dk(t − 1) + β2∆dk(t), where
∆dk(t) ∼ N (0, σ2

d) with σd = 100m; and β2 = (1 − β2
1)1/2
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with β1 = 0.95. Note that the radius of the cell in this study is as-
sumed as 1000m. The fixed step-size is set as µ = 0.01. All other
conditions are the same as those in Fig. 2. Figure 4 shows the re-
sults for the uplink SBPC scheme. It is seen that the time-varying
optimal user subset can be closely tracked.
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Fig. 4. The total rate of the chosen user subsets versus the iteration
number: uplink scheme, time-varying channel case.

Fairness among the users

Finally, we demonstrate the system performance in terms of the
fairness. Suppose ψk = 1

10
for each user k. Note that there are

1000 iterations within each interval i, and the similar time-varying
channels as those in Fig. 4 are adopted with τ = 500. Figure 5
shows the normalized users’ rates versus the interval index for the
downlink SBPC case, where Nk = 32 and ηk = 10−10W. It is
seen that, by adjustingw(i) as denoted in (2), although the fairness
constraints of the users are not satisfied within a short time scale,
the long term fairness can be well guaranteed.
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Fig. 5. The normalized throughput of the users versus the schedul-
ing interval index: downlink scheme, time-varying channel case,
Nk = 32 and ψk = 1

N
, k = 1, 2, · · · , N .

5. CONCLUSIONS

We have developed a framework for power-controlled CDMA sys-
tems to achieve efficient resource allocation while guaranteeing
the long term fairness. Given the user subset, the optimal power
control scheme can be calculated for different CDMA systems.
The multiuser OFS problem then refers to the optimal user subset
selection to maximize the instantaneous system throughput sub-
ject to the fairness constraints. We have developed the discrete
stochastic approximation algorithm to achieve efficient and effec-
tive optimal user subset selection to maximize the instantaneous
system throughput. We have also extended the algorithm to the
time-varying channel case for which our solutions have tracking
capabilities. Simulation results demonstrated that the algorithms
can effectively select the optimal user subset with good conver-
gence performances, and adaptively track the time-varying opti-
mum in the non-stationary environments. Moreover, the system
can guarantee the fairness among all users over large time scales.
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