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Abstract — Ultra Wide-Band (UWB) communication holds
great potential for significantly improved data rate in future wire-
less systems. Accurate channel estimation and synchronization are
critical for successful operation of a UWB system. We propose in
this paper a completely blind channel estimation and synchroniza-
tion algorithm for UWB systems that employ pulse-position mod-
ulation. The algorithm exploits the first-order cyclostationarity in
the received signal and performs certain circular deconvolution.
The complexity is extremely low — only some “overlap-add” op-
erations and FFT operations are needed. The algorithm is capable
of simultaneously estimating multiple (say, more than 60) channel
taps and there is no ambiguity in either the amplitude or the phase
of the estimated channel. It is shown that using estimated chan-
nel from 500 information symbols, the performance can approach
that with known channel within 2 dB in signal to noise ratio for bit
error rate less than 0.01.
Keywords: Ultra Wide-band, blind channel estimation, first-order
statistics, pulse position modulation, cyclostationary,

1. INTRODUCTION

Ultra-Wideband (UWB) communication has attracted much
attention recently from both academia and industry, partly
because of its huge potential for offering short-range broad-
band wireless services using frequencies currently already
allocated to other applications [5, 7, 8].

Channel estimation and synchronization are important
tasks for the successful operation of a UWB system because
the demodulation of information symbols depends critically
on the availability of full or partial channel information.
There has been some preliminary work of channel estima-
tion [2] and synchronization [6]. Both data-aided (training
based) and non-data-aided (blind) methods are considered
in [2], but the methods require multi-dimensional search
to maximize the log-likelihood function and therefore have
high complexity. Timing acquisition and tracking are con-
sidered in [6] based on second-order cyclostationary, but no
channel estimation is attempted. Pilot waveform assisted
modulation is proposed in [9] to aid the channel estimation
task at the receiver.

In this paper, we will consider the blind channel esti-
mation problem for a UWB system employing pulse posi-
tion modulation (PPM). Our method does not require pi-
lot symbols or pilot waveforms [2, 9]. We will also obtain
coarse symbol timing to a precision that is enough for sym-

bol demodulation. The proposed methods is based on the
first-order statistics of the received signal and has very low
complexity — only some basic signal processing operations
such as “overlap add”, and Fourier transform and/or filter-
ing are needed.

2. SYSTEM MODELING

Consider a single user in a UWB communication system
employing PPM modulation. For simplicity, we consider
binary modulation, but the proposed method can also be ap-
plied to M -ary modulation with M > 2. Let w(t) denote
a monocycle, which usually is a twice-differentiated Gaus-
sian pulse of width less than one nano-second. The spec-
tral shaping pulse for binary PPM modulation in a “time-
hopping” UWB system [4] can be written as

p(t) =
Nf−1∑
j=0

w(t − jTf − cjTf ), (1)

where Tf is the frame duration, Nf is the number of frames
per symbol, and (c0, c1, . . . , cNf−1) is a sequence of real
numbers between 0 and 1 that specifies the user-specific
time-hopping code. The code cj’s should be user-dependent
and this dependence is not shown here because we will be
considering only one user and treat all other users as addi-
tive noise. Also notice that a symbol consists of multiple
frames rather than vice versa. We assume that the user-
specific code (c0, c1, . . . , cNf−1) is known at the receiver
and is symbol-periodic, i.e., it does not change from sym-
bol to symbol.

Having specified the spectral shaping pulse p(t), the
transmitted signal of the user of interest employing binary
PPM can be written as

s(t) =
∞∑

i=−∞
p(t − iTs − bi∆), (2)

where Ts is the symbol duration and is equal to NfTf , bi’s
are the binary zero-or-one information symbols with equal
probability 1/2, and ∆ is a fixed constant, which is a PPM
parameter. The parameter ∆ is usually slightly larger than
the width of the monocycle w(t) and is much smaller than
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the frame duration Tf (and hence much smaller than the
symbol duration Ts).

Let h(t) denote the impulse response of the channel that
the user of interest’s signal experiences. Let x(t) = p(t) �
h(t), where “�” denotes linear convolution. Assume that
other than the multipath channel h(t), there is an additional
delay τ between the transmitted signal of the user of interest
and the received signal; τ is assumed to be a real number
between 0 and Ts without loss of generality. The received
signal can be written as

y(t) =
∞∑

i=−∞
x(t − iTs − bi∆ − τ) + n(t), (3)

where n(t) is the additive noise plus the multiple-user inter-
ference; n(t) is assumed to be zero-mean and white.

We assume that the channel remains constant for a dura-
tion of I symbols. The channel estimation will therefore be
based on I consecutive received symbols. In addition, we
assume that AS1: The channel is causal and Finite Impulse
Response (FIR), and the duration of the channel is less than
a fraction of Ts; i.e., h(t) = 0, if t < 0 or t > εTs, where
0 < ε < 1 and ε is known. We require ε < 1 for the unique
identification of τ .

3. PROPOSED CHANNEL ESTIMATION METHOD

The blind channel estimation problem can be formulated as
follows: Given a segment of y(t), say for 0 ≤ t ≤ T , and
the spectral shaping pulse p(t), estimate the channel h(t)
and the timing information τ .

Our proposed channel estimation method is based on
the cyclostationary in the first-order statistics of the received
signal y(t). To derive the method, we first evaluate the ex-
pectation E[y(t)] over the information symbols bi’s and the
additive noise n(t).

For a fixed channel realization h(t), since bi has equal
probability of being zero or one, and n(t) is zero-mean, we
have [cf. (3)]

ȳ(t) := E[y(t)] =
∞∑

i=−∞

1
2
[x(t−iTs−τ)+x(t−iTs−∆−τ)].

(4)
It can be readily seen that ȳ(t) is periodic with period Ts

and non-zero, thanks to the PPM modulation format. This
simple but important observation will provide the basis of
our channel estimation and synchronization algorithm.

Since x(t) = h(t) � p(t), we can re-write ȳ(t) in (4)
as ȳ(t) = [ 12p(t) + 1

2p(t − ∆)] � h̃(t − τ) where h̃(t) =∑∞
i=−∞ h(t−iTs) is a periodically extended “channel”. Let

us also define the “average pulse” pa(t) = 1
2 [p(t)+p(t−∆)]

and periodically extend it as

p̃a(t) =
∞∑

i=−∞
pa(t − iTs). (5)

In practice, p(t) and p(t − ∆) can be easily designed to be
confined to one symbol period, in which case p̃a(t) = pa(t),
for 0 ≤ t ≤ Ts. Denote the circular convolution z12(t) of
two periodic signals z1(t) and z2(t) both with period Ts as

z12(t) = z1(t) ⊗ z2(t) =
∫ Ts

0

z1(a)z2(t − a)da. (6)

With this notation and defining h̃τ (t) := h̃(t − τ), we can
write ȳ(t) in terms of circular convolution as

ȳ(t) = p̃a(t) ⊗ h̃τ (t). (7)

Given ȳ(t), which can be estimated from the received
signal y(t), and p̃a(t), which can be constructed from the
known spectral shaping pulse p(t), we would like to esti-
mate h(t) and τ under the assumption AS1. We will de-
compose the problem into two steps. In the first step, we
estimate h̃τ (t) and in the second step, we estimate τ from
the estimate of h̃τ (t).

Theoretically, the problem of estimating h̃τ (t) from ȳ(t)
can be solved by computing the Fourier series of both sides
of (7). The Fourier series Z[k] of a periodic signal z(t)
of period Ts is defined as Z[k] =

∫ Ts

0
z(t)e−2πktdt. The

Fourier series of both sides of (7) is then

Ȳ [k] = P̃a[k]H̃[k], (8)

where Ȳ [k], P̃a[k], and H̃[k] are the Fourier series of ȳ(t),
p̃a(t), and h̃(t), respectively. It follows that H̃[k] can be
recovered as Ȳ [k]/P̃a[k], provided that P̃a[k] �= 0. This
simple division is ad hoc in nature. But in AWGN, if we
ignore the constraints on the channel h(t) (e.g., its finite
duration εTs), then this per-frequency division minimizes
the least-square distance between Ȳ [·] and H̃[·], and hence
is the maximum likelihood estimator for H̃[·] and its time-
domain counterpart h̃τ (t).

Once H̃[k] is found, we can obtain an estimate ˆ̃
hτ (t)

of h̃τ (t) by performing the inverse Fourier transform. We
propose to estimate τ by maximizing the energy of the mul-
tipath channel estimate:

τ̂ = arg max
0≤τ≤Ts

∫ τ+Ts

τ

[ˆ̃hτ (t)]2dt. (9)

We develop the algorithmic steps for channel estimation
and synchronization as follows.
Steps for channel estimation and synchronization

S1. Construct p̃a(t) from p(t) according to (5) and its
Fourier series P̃a[k], k = 0, 1, . . ..

S2. Receive y(t) for 0 ≤ t ≤ (I − 1)Ts;
S3. Obtain an estimate ˆ̄y(t) of ȳ(t) = E[y(t)] by perform-

ing the following “overlap-add” operation: ˆ̄y(t) =
1
I

∑I−1
i=0 y(t + iTs), 0 ≤ t ≤ Ts.

IV - 530

➡ ➡



S4. Compute the Fourier series ˆ̄Y [k] of ˆ̄y(t) and obtain
ˆ̃H[k] as ˆ̃H[k] = ˆ̄Y [k]/P̃a[k] if P̃a[k] �= 0, and 0 oth-
erwise.

S5. Do inverse Fourier transform of ˆ̃H[k] to obtain ˆ̃
hτ (t).

S6. Estimate τ according to (9) to obtain τ̂ .

S7. Estimate the channel h(t) as ĥ(t) = ˆ̃
hτ (t + τ̂) if 0 ≤

t ≤ εTs, and 0 otherwise.

Detection algorithm

S8. Based on the estimates ĥ(t) and τ̂ , construct the “dif-
ference” signal xd(t) = [p(t) − p(t − ∆)] � ĥ(t − τ̂).

S9. Obtain the decision statistics di =
∫ ∞
−∞ y(t)xd(t −

iTs)dt, and decide that b̂i = 0 if di ≥ 0, and 1 other-
wise.

Remark 1 (parameterization) We do not parameterize
the channel in terms of a number of taps and their delays
and amplitudes. There are therefore essentially an infinite
number of parameters to estimate: the function value of
h(t) for t ∈ [0, εTs]. This problem as it stands can be ill-
posed because it is impossible to estimate infinite unrelated
parameters from the finite data. Therefore, in practice, in
order to produce reliable estimation of the channel, some
more constraints on it, in addition to AS1, have to be made.
These constraints can be on the bandwidth of the channel
frequency response, the number of discrete taps, or based on
some other finite parameterization schemes. Also, in prac-
tice, we will work in the discrete-time domain and use Fast
Fourier Transform (FFT) in steps 4 and 5. In general, we
need to sample the received signal at a rate much higher
than the symbol rate, which can be a big challenge in prac-
tice. This drawback is a disadvantage of the proposed blind
channel estimation algorithm as compared with other non-
blind transmitted-reference methods in e.g., [9]. Recently,
it has been shown that for synchronization and channel esti-
mation purposes, it is possible to sample that received signal
at a rate lower than the Nyquist rate [1, 3].

Remark 2 (Identifiability) If there are zeros in the
Fourier transform of p̃a(t), then consistency in the esti-
mation of h(t) may not be achievable. Some frequency
component of the channel impulse response may not be re-
coverable due to the lack of excitation at the corresponding
frequency in the signal p̃a(t). The consistency for estimat-
ing h(t) can be achieved if and only if the Fourier series
H̃[k] of

∑∞
i=−∞ h(t − iTs) is zero for every k such that

P̃a[k] is zero. Even if the channel cannot be consistently
estimated due to lack of excitation at certain frequencies of
p̃a(t), the effect of missing certain frequency components
in the channel estimation is not severe: it is as if the channel
has filtered out those frequencies. However, it should be
noticed that due to the division involved in Step 4 of the
algorithm, noise will be enhanced when P̃a[k] is small.

Remark 3 (Blindness) Our algorithm is completely
blind, i.e., no training is needed. For phase-shift keying

(PSK) modulation, blind algorithms usually cannot resolve
some phase ambiguity due to the inherent rotational invari-
ance in the transmitted signal. Here, thanks to the PPM
based transmission, our blind algorithm does not have am-
biguity.

4. SIMULATION RESULTS

In this section, we present some simulation results for the
proposed algorithms. We will assume that the channel
is FIR and follows a tap-delay-line model. The simula-
tions followed the steps described in Section 3, with the
continuous-time Fourier series and inverse Fourier trans-
form replaced by FFT and IFFT operations.

The system parameters are: Tf = 11ns, Nf = 12,
Ts = 132ns. The parameter ∆ is set 1ns or 2ns and it will
be indicted which one is used. A discrete-time equivalent
model of the UWB system is used. The channels we sim-
ulated had 32 or 64 equally spaced taps with spacing 1ns.
The channel taps were assumed to be independent, zero-
mean, and Gaussian distributed with equal variance. The
average channel energy is normalized to one. We remark
that the UWB channel estimator developed in [2] does not
seem possible for this setup because the parameter space (32
or 64 taps) is too large to search using the methods proposed
therein.

In our simulations, we had modified the algorithm pre-
sented in Section 3 to avoid large noise enhancement caused
by small elements of P̃a[k]. Specifically, the conditions
P̃a[k] �= 0 and P̃a[k] = 0 were modified to |P̃a[k]| ≥ γ

and |P̃a[k]| < γ, respectively, where the tolerance thresh-
old γ is a small positive number. In our simulations, we
have chosen γ in an ad hoc way.

We report in Fig. 1 the MSE as a function of the data
record lengths I for fixed SNR’s (10 and 15 dB). Larger data
record length provided better performance in both MSE, as
can be expected. We used γ = 0.06 in this simulation.

For fixed data length I = 500, which corresponds to
a delay of 66 µs, we report in Fig. 2 and Fig. 3 the MSE
and BER, respectively, as functions of the SNR. We have
considered four combinations of choices for PPM parame-
ter ∆ and the tolerance threshold γ: i) γ = 0.1, ∆ = 1ns;
ii) γ = 0.1, ∆ = 2ns; iii) γ = 0, ∆ = 1ns; and iv)
γ = 0, ∆ = 2ns. We chose different choices for ∆ to
see its effect on the system performance. The performance
(both MSE and BER) was better if we use γ = 0.1 to avoid
large noise enhancement, as compared with the case when
γ = 0. There was little performance difference between
∆ = 1ns and ∆ = 2ns. In Fig. 3, we also plot the per-
formance when the channel was known. It was noted that
the performance with estimated channel came close to that
with known channel within 2 dB in SNR for BER less than
10−2.

The MSE tended to some error floor as SNR increases
(not shown in Fig. 2), which was due to the missing fre-
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quency components caused by the introduced threshold γ.
But for the SNR range that is shown, namely below 18 dB,
introducing γ reduced the MSE because it limited the noise
enhancement. Error floor in BER for high SNR was not
observed.

5. CONCLUSIONS

We developed a fully blind channel estimation and symbol
synchronization algorithm for ultra-wideband communica-
tions employing pulse position modulation. The algorithm
was based on first-order cyclostationarity of the received
signal. Based on FFT operations, the algorithm has low
complexity and can deal with channels with a large number
of taps that are difficult to estimate using existing param-
eterized searching algorithms. Simulations show that the
blind algorithm together with a simple matched-filter based
detector performs within 2 dB of a clairvoyant receiver.

In future work, we will investigate possibilities of utiliz-
ing decision-feedback type and iterative type of algorithms
that iterate between channel estimation and symbol detec-
tion, which will further refine the channel estimation accu-
racy and improve the system performance in bit error rate.
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Figure 1: MSE versus I for fixed SNR
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Figure 2: MSE versus SNR for fixed data record length I
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Figure 3: BER versus SNR for fixed data record length I .
The performance with known channel is also depicted.
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