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ABSTRACT

The overall system performance of data-aided ultra-wideband
(UWB) communications relies critically on the accuracy of
synchronization and channel estimation during the training
phase. The total transmission resources should be properly
allocated between training and information symbols in order
to strike a desired balance between performance and informa-
tion rate. To this end, this paper derives optimum transmission
schemes that judiciously allocate the limited transmit power
and pulse numbers for signal reception tasks performing opti-
mal timing acquisition, channel estimation, as well as symbol
detection. The resulting selection of transmitter parameters
not only enables both the timing and channel estimators to
attain the minimum mean-square estimation errors, but also
maximizes the average system capacity.

1. INTRODUCTION

Ultra wide-band (UWB) technology has attracted great inter-
est in both academia and industry for its promising future in
short-range, high-data-rate indoor wireless communications.
Conveying information over repeated ultra-short pulses, UWB
signaling entails ample diversity inherent in its enormous band-
width. In order to collect the diversity gain, an optimal corre-
lation based receiver requires accurate timing-offset and chan-
nel estimates, both of which are challenging to obtain due to
the unique UWB transmission structure.

In a data-aided mode, the generalized likelihood ratio test
(GLRT) derived in [1] suggests that training symbols can be
partitioned into two non-overlapping subsets to separately per-
form channel estimation and timing acquisition without loss
of optimality. To optimize the overall timing acquisition per-
formance that is affected by both subsets, optimum training
sequence (TS) design is investigated in [2] under the con-
straints on total training resources (in terms of power and
pilot symbol numbers). Under perfect timing, transmission
resource allocation for channel estimation has been investi-
gated using the pilot waveform assisted modulation (PWAM)
framework [3]. In this paper, we jointly consider the demands
on transmission resources that are imposed from all three key
elements in a UWB system: timing acquisition, channel esti-
mation, and detection of information-bearing symbols. Based
on the two-subset TS structure in [2], we use one of the sub-
sets to perform PWAM-type channel estimation [3], yielding
low-complexity yet near-optimum receiver design. Design
tradeoffs reflect in the fact that more training symbols improve

both timing-offset, channel, and symbol estimation, but also
reduce transmission rate. To strike a desired performance-
throughput tradeoff at the system level, we derive optimum
energy and number allocation between training and informa-
tion bearing symbols to jointly maximize the average system
capacity, which is shown to be equivalent to minimizing the
mean-square timing and channel estimation errors. Recogniz-
ing the impact of nonlinear amplifiers on system implemen-
tations, we also consider the optimum transmission resource
allocation under a constant-envelope constraint.

2. SYMSTEM MODEL

In a UWB peer-to-peer communication system, every infor-
mation symbol s(n) ∈ {±1} is conveyed over Nf repeated
pulses p(t), with one pulse per frame of frame duration Tf .
Each p(t) has unit energy and ultra-short duration Tp (Tp �
Tf ) at the nanosecond scale. During the training phase, each
training symbol has energy Et,0 spread over Nf frames. The
transmitted signal is u(t) :=

√Et,0/Nf

∑∞
k=0 s(k)ps(t−kTs),

where ps(t) :=
∑Nf−1

j=0 p(t−jTf−cjTc) is the transmit symbol-

waveform of duration Ts := NfTf , and {cj}Nf−1
j=0 is a pseudo-

random time-hopping code with cjTc <Tf ,∀j.
The signal u(t) passes through a L-path dense multipath

channel with impulse response g(t) :=
∑L−1

l=0 αlδ(t−τl,0) [4],
where αl and τl,0 denote the attenuation and delay of the l-
th path, respectively. The overall channel is given by h(t) :=
(g∗p)(t) =

∑L−1
l=0 αlp(t−τl,0) (with ∗ denoting convolution),

and the composite received symbol-waveform is hs(t) := (g∗
ps)(t) =

∑Nf−1
j=0 h(t − jTf − cjTc). Denoting the receiver

timing-offset as τ0, the received signal can be expressed as

r(t)=

√
Et,0

Nf

∞∑
k=0

s(k)hs(t − nTs − τ0) + wt(t), (1)

where wt(t) is a zero-mean Gaussian noise with PSD σ2
w.

We suppose h(t) and τ0 remain invariant over a burst of
duration NTs, but may change from burst to burst in a slow-
varying channel. The timing-offset τ0 can be written as τ0 :=
nfTf + ε, where nf is an integer representing the frame-
level acquisition error, and ε ∈ [0, Tf ) denotes the small-scale
tracking error. Mis-timing is confined to be within a symbol
after energy detection, thus nf ∈ [0, Nf − 1]. In every burst
of N symbols, we use a total of Nt training symbols to esti-
mate both the acquisition error nf and the channel h(t), while
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treating ε as an estimation error. Increasing Nt, or alterna-
tively, the total training energy Et := Et,0Nt, can improve the
accuracy of both channel and timing estimates ĥ(t) and n̂f .
While the resulting symbol detection performance improves,
the information rate drops. To balance this paradox, we strive
to judiciously assign energy Es and number Ns of information
symbols under the constraint of total energy E := Et+Es and
burst size N = Nt+Ns. The goal is to maximize the system
capacity C given the fixed transmission resources per burst.

3. TRANSMISSION RESOURCE ALLOCATION

3.1. Training Sequence Design and Timing Acquisition

The training sequence (TS) pattern plays a critical role in de-
veloping timing and channel estimators, and directly affects
the estimation performance. Depending on whether two con-
secutive symbols have the same or opposite signs, the Nt

training symbols can be grouped into two subsets, that is,
S+ := {s(n) : s(n) = s(n−1)} and S− := {s(n) : s(n) =
−s(n−1)}. As observed in [1], the received signal result-
ing from S+ does not experience any symbol sign transition,
therefore does not contain timing information, but is useful for
channel estimation as if in a no-data-modulation mode. Tim-
ing offset parameters can be extracted from the symbol tran-
sition in S−, using the channel estimate obtained from S+.
Such an observation is rigorized in [1] to suggest that estima-
tion of channel amplitudes and timing errors can be carried
out separately from the non-overlapping subsets S+ and S−,
without loss of optimality.

Based on this separability property [1], it is convenient
to place N+

t symbols in S+ at the first segment of TS fol-
lowed by N−

t = Nt − N+
t symbols in S−. With such a TS

placement, a high-performance maximum-likelihood digital
synchronizer can be constructed. Sampling at a low rate of
one sample per symbol, an effective way to collect sufficient
multipath energy while bypassing the unknown channel h(t)
is to select a noisy template pr(t) := r(t), t ∈ [NfTf , (Nf +
1)Tf ) as the receiver correlation template [2]. The symbol-
rate samples at the correlator output is thus given by y(n) :=∫ (n+1)Ts

nTs
r(t)

∑Nf−1
j=0 pr(t−nTs−jTf )dt. Note that the noise-

free version of pr(t) matches exactly to the unknown channel
thanks to the TS structure; thus y(n) enjoys near-optimum en-
ergy capture via maximum-ratio combining, without resorting
to channel estimation. Due to mis-timing, each sample y(n)
may contain two consecutive input symbols. Let us define
amplitude Aε :=

√Et,0Aε and a tracking-induced energy loss

factor λh,ε :=(1/Rh)
∫ Tf

Tf−ε
h2(t)dt, where Rh :=

∫ Tf

0
h2(t)dt

is the total channel energy. Accordingly y(n) can be ex-
pressed as [1]

y(n)=Aε

(
s(n)

(
1−nf +λh,ε

Nf

)
+s(n−1)

nf +λh,ε

Nf

)
+wt(n)

(2)
where the noise sample wt(n) is a Gaussian random variable
with zero mean and variance σ2

t := σ2
wRhNf .

Observe from (2) that n′
f := nf +λh,ε represents the por-

tion of signal waveform collected in the symbol-long correla-
tion template due to mis-timing. Knowing {s(n), y(n)}, this

observation can be exploited optimally to obtain the maxi-
mum likelihood estimate (MLE) of the unknown n′

f [2], which
approximates the true timing offset nf subject to a bounded
timing ambiguity λh,ε ∈ [0, 1] caused by the unknown ε. The
ML formulation in [2] achieves the Cramer-Rao lower bound
CRB(n′

f ), which can be exploited to optimally allocate the
subset energies E+

t := N+
t Et,0 and E−

t := N−
t Et,0. These

results are summarized below [2]:

Result 1 (Training Resource Allocation and CRB) The
MLEs of Aε and nf can be obtained from symbol-rate sam-
ples {y(n)}. For a fixed total training energy Et, the opti-
mal energy allocation to minimize the CRB(n′

f ) is given by

(E+
t )opt = Et(Nf − 2nf )/(2(Nf − nf )), and the resulting

CRB(n′
f ) is upper bounded by CRB(n′

f )opt =N2
f σ2

w/A2
ε .

Having acquired n̂f , the frame-level residual timing er-
ror ñf becomes ñf := �n̂f −nf�Nf

, where �·� represents
the modulo operation with based Nf . Recalling the defini-
tion n̂

′
f := n̂f +λh,ε, and noting that n̂f is an unbiased esti-

mate, the mean-square estimation error (MSE) of ñf becomes
σ2

ñf
= σ2

n̂f
:= E{|n̂f − nf |2} = Nfσ2

w/(EtRh)+σ2
ε . Note

that σ2
ñf

is inversely proportional to the total training energy
Et and the energy capture index Rh. In addition, an addi-
tive noise floor σ2

ε arises from λh,ε, whose mean ¯λh,ε and
MSE σ2

ε are both bounded in [0, 1]. The residual acquisi-
tion error ñf will affect the ensuing channel estimation and
symbol detection quality, while its MSE σ2

ñf
will be useful

in transmission resource allocation: a comparatively smaller
σ2

ñf
suggests less resources to be allocated for synchroniza-

tion purpose.

3.2. Channel Estimation

Channel estimation can be carried out during the first N+
t

symbol intervals, since the corresponding TS subset is equiv-
alent to having no data modulation. Subject to the residual
mis-timing τ̃0 := ñfNf + ε, the effective symbol-long chan-
nel hr(t) is related to hs(t) by

hr(t) =
{

hs(t−τ̃0+Ts), t ∈ [0, τ̃0);
hs(t − τ̃0), t ∈ [τ̃0, Ts).

(3)

In fact, hr(t) is nothing but a circularly-shifted (by τ̃0) ver-
sion of hs(t) bounded within [0, Ts). The received signal in
the n-th symbol interval is given by rn(t) := r(t + nTs) =√Et,0/Nfhr(t)+wn(t), where t ∈ [0, Ts), and n ∈ [0, N+

t −
1]. The segments {rn(t)} can be summed up and scaled by
µ := N+

t

√Et,0/Nf to yield an unbiased least-square (LS)
channel estimate of hr(t):

ĥr(t) := µ−1

N+
t −1∑

n=0

rn(t) = hr(t) + µ−1

N+
t −1∑

n=0

wn(t). (4)

It can be shown that this LS estimator achieves the estimation
CRB lower bound [3]. Let us define the residual channel es-
timation error as h̃r(t) := ĥr(t) − hr(t). The MSE of h̃r(t)
is the same as the variance of ĥr(t), both of which can be
deduced from (4) as σ2

ĥr
=σ2

h̃r
:= E{h̃2

r(t)} =2Nfσ2
w/Et.
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3.3. System-Level Resource Allocation

Both the timing and channel estimation MSEs σ2
ñf

and σ2
h̃r

decrease monotonically as the training energy Et increases.
On the other hand, for fixed total energy per burst, the en-
ergy of information symbols Es decreases as Et increases. To
balance performance versus information rate, we seek optimal
resource allocation between training and information symbols
to jointly maximize the average system capacity C.

The received information-conveying r(t) can be easily ob-
tained by replacing Et,0, τ0, and wt(t) in (1) by Es,0 := Es/Ns,
τ̃0, and ws(t). Subject to τ̃0, each Ts-long segment of r(t),
denoted by rn(t) := r(t + nTs), t ∈ [0, Ts), is given by

rn(t) =
√

Es,0
Nf

(s(n)hs(t − τ̃0) + s(n − 1)hs(t − τ̃0 + Ts))

+wn(t). (5)

Subject to imperfect channel estimation, an optimum correla-
tor uses the Ts-long channel estimate ĥr(t) obtained in Sec-
tion 3.2 as the correlation template to yield decision statistic
ys(n) :=

∫ Ts

0
rn(t)ĥr(t)dt for detecting s(n). Similar to (2),

ys(n) can be derived as

ys(n) =
√

Es,0
Nf

Rh

(
s(n)(Nf −ñ′

f )+s(n−1)ñ′
f

)
+ζ(n), (6)

where ñ′
f = ñf +λh,ε is the residual acquisition error sub-

ject to ε-induced ambiguity, and ζ(n) is the composite noise
term resulting from not only the ambient noise, but also the
random timing and channel estimation errors as well. De-
noting the signal component of rn(t) as rns(t) := rn(t)−
wn(t), ζ(n) comprises the following three terms: ζ1(n) :=∫ Ts

0
wn(t)hr(t)dt, ζ2(n) :=

∫ Ts

0
rns(t)h̃r(t)dt, and ζ3(n) :=∫ Ts

0
wn(t)h̃r(t)dt. It is shown that these three terms can be

approximated to be Gaussian random variables with zero mean
[3], so is ζ(n). All the contributing factors to ζ(n), including
the auto- or cross-correlations among wn(t), hr(t), h̃r(t), are
statistically known via σ2

w, Rh, σ2
ĥr

, subject to the impact of
residual mis-timing. After some tedious derivations and defin-
ing Nc :=Tf/Tc, we reach the variance σ2

ζ of ζ(n) as (proof
omitted for space limit):

σ2
ζ = σ2

ζ1
+ σ2

ζ2
+ σ2

ζ3
(7)

=σ2
w

(
NfRh+σ2

ĥr
Nc

)
+Es,0

N2
f
Rhσ2

ĥr

(
N2

f+2σ2
ñf
−2(Nf−1)λ̄h,ε

)
.

To get the system capacity C, let us exploit the effective
SNR ρeff of each information symbol. We partition the dis-
crete signal model in (6) into its signal component s̃(n) :=√Es,0/NfRh(Nf−ñ′

f )s(n) and its noise component w̃(n) :=√Es,0/NfRhñ′
fs(n−1)+ζ(n). The power of those two com-

ponents are denoted by Eñf ,ε

{|s̃(n)|2} and Eñf ,ε

{|w̃(n)|2}
respectively. Consequently, we obtain the effective SNR per
information symbol as:

ρeff:=
Eñf ,ε

{|s̃(n)|2}
Eñf ,ε {|w̃(n)|2} =

EsR2
h

(
σ2

ñf
+σ2

ε +(Nf −λ̄h,ε)2
)

EsR2
h

(
σ2

ñf
+σ2

ε +λ̄2
h,ε

)
+NfNsσ2

ζ

.

(8)

To link the system capacity C with ρeff , we treat the
overall UWB system, including the transmitter, the channel,
the correlator, and the symbol detector, as a binary symmet-
ric channel (BSC) with transition probability p = Q(√ρeff )1

[3]. Inspection on the mutual information of the BSC reveals
that the average channel capacity is

C =
Ns

N
Eh{p log2 p + (1 − p) log2(1 − p) + 1}. (9)

It is shown from (8) that when the channel coefficients is
perfectly estimated and timing is known, i.e., ĥ(t) = h(t),
σ2

ñf
= 0, and λh,ε = 0, the effective SNR becomes ρeff =

EsRh/(Nsσ
2
w), which provides the upper bound for the effec-

tive SNR. Its associated capacity C also gives an upper bound
for the average capacity in the presence of imperfect channel
and timing estimation.

Having obtained the expression of C, we can start deriving
system-level resource allocation. Let us define an energy allo-
cation factor β :=Es/E ∈(0, 1), which leads to Et =(1−β)E .
For convenience we also define the nominal transmit-SNR
ρ := E/(Nσ2

w) and the nominal receive-SNR ρr := Rhρ,
which simply scales ρ by the energy capture Rh. Putting all
together, we express the effective SNR in (8) with respect to
β as follows:

ρeff (β) =
N2

f

(1−β)ρrN+A

N2
f +2D

(1−β)ρrN+
N2

f Ns

βNρr
+

4N2
f

(1−β)2ρ2
rN2 +

2N2
f NcNs

β(1−β)ρ2
rN2 +B

,

(10)
where the three constants A,B, and D are defined as A :=
2σ2

ε +(Nf − λ̄h,ε)2, B := 2σ2
ε + λ̄2

h,ε and D := N2
f +2σ2

ε −
2(Nf −1)λ̄h,ε, respectively. Fixing Ns and N , the capacity
C increases monotonously with ρeff , therefore the optimal
β∗ that maximizes ρeff also maximizes C. When seeking a
closed-form β∗, we find ∂ρeff/∂β to be a third-order poly-
nomial in β. Solutions to β∗ can be either obtained from the
roots of ∂ρeff/∂β, or directly sought from (10) numerically.

Proposition 1 (Energy Allocation per Burst) For any given
burst size N , information symbol number Ns, and total energy
E per burst, the energy allocation factor β∗ maximizing the
capacity C can be numerically solved by maximizing (10).

Proposition 1 implies that when the optimal β∗ is selected,
the SNRs for training and information symbols are generally
not equal. Transmissions with uneven instantaneous power
level may reduce the efficiency of nonlinear amplifiers in sys-
tem implementation. To avoid this problem, we consider a
more practical situation where training and information sym-
bols have the same energy per symbol, i.e., Et,0 =Es,0. In this
case, we introduce a number allocation factor α := Ns/N ∈
(0, 1). Accordingly, the number of training symbols is Nt =
(1 − β)N , and the per-symbol energy is Et,0 = Es,0 = E/N .
Similar to (10), the effective SNR in terms of α is given by

ρeff (α) =
N2

f

(1−α)ρrN+A

N2
f +2D

(1−α)ρrN +
N2

f

Nρr
+

4N2
f

(1−α)2ρ2
rN2 +

2N2
f Nc

(1−α)ρ2
rN+B

.

(11)

1Q(x) := (1/
√

2π)
∫ ∞

x exp(−y2/2)dy.
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Therefore, the average capacity becomes a function of α, that
is,
C(α)=αEh [p(α) log2 p(α)+(1−p(α)) log2(1−p(α))+1] ,

(12)
where the transition probability is p(α) := Q(

√
ρeff (α)).

Substituting (11) into (12), we obtain the optimum α∗ by max-
imizing the average capacity C via numerical search.
Proposition 2 (Number Allocation per Burst) For any given
burst size N and with equal per-symbol energy, the optimum
number allocation factor α∗ that maximizes the average ca-
pacity C can be numerically obtained by maximizing (12).

4. SIMULATIONS

Simulation results are compared under both optimum resource
allocation and non-optimal cases to validate our analyses and
designs. In all test cases, the transmission parameters are se-
lected as Tp =Tc =1ns, Tf =100ns, Nf =50 and N =100,
and the random channel parameters are generated according
to [4], with Γ=30ns, γ =5ns, 1/Λ=2ns and 1/λ=0.5ns.

For energy allocation per burst, Figure 1(a-b) depict the
effective SNR ρeff and the corresponding average capacity
vs. Ns/N , for various β values. It is observed that the op-
timum β∗ offers the maximum effective SNR and system ca-
pacity when Ns is fixed. The results for β=0.5 are very close
to the best case especially at a low nominal SNR ρ, which
provides a reasonable near-optimum parameter in the imple-
mentation.

For number allocation per burst under the equal-power
constraint, Figure 2 depicts the average system capacity over
500 random channel realizations vs. the nominal SNR ρ, for
various number allocation factors α. It has been confirmed
by Figure 1 that C increases monotonously as Ns increases,
for a fixed β when unequal power transmission is allowed.
As a result, the optimum N∗

s should be N∗
s = N −3, where

Nt =3 is the minimum number of training symbols needed for
both timing and channel estimation, as can be deduced from
the two-subset TS structure. Hence, we can get the maximum
C(β∗) at N∗

s for reference. It is shown that the optimum num-
ber allocation α∗ using Proposition 2 subject to equal-power
transmission offers system capacity that is very close to the
maximum C(β∗) at N∗

s .

5. SUMMARY

In this paper, system-level resource allocation results are de-
rived to facilitate transmitter design in trading off performance
and information rate. Because of the use of near-optimum,
low-complexity receiver design for timing, channel estima-
tion, and symbol detection, our optimum allocation strategies
not only attain the maximum system capacity, but also min-
imize the mean-square channel and timing estimation errors,
and thereby achieve the CRBs.
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Fig. 1. Energy allocation per burst using Proposition 1: (a)
ρeff vs. Ns/N (b) average capacity vs. Ns/N .
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