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ABSTRACT

Realizing the benefits of ultra-wideband (UWB) communica-
tions hinges critically on judicious pulse shape design to en-
able UWB spectral mask compatibility, and co-existence with
and adaptation to other wireless devices. To this end, we pro-
pose a convex optimization based waveform design method
for UWB radios. By casting the pulse design problem as a
(convex) semidefinite program (SDP) over the pulse autocor-
relation, globally optimal waveform designs can be efficiently
obtained. While the focus of this paper is on the design of
waveforms that optimally utilize the bandwidth and power al-
lowed by the spectral mask, the flexibility of the SDP frame-
work also allows the optimization of several other system ob-
jectives.

1. INTRODUCTION

With the release of FCC spectral masks in 2002, ultra wide-
band (UWB) radios have attracted increasing interest for their
potential applications in short-range high-data-rate wireless
communications. By conveying information over ultra-short
pulses (at a nanosecond scale), UWB signals expose the fine
time resolution offered by their enormous bandwidth. The re-
sulting temporal diversity makes UWB technology a promis-
ing alternative for robust wireless indoor communications.
However, the benefits of UWB signaling may be offset by the
interference to and from existing systems operating in over-
lapping frequency bands. For spectrum overlay considera-
tions, FCC regulations imposed a spectral mask that strictly
limits the power spectrum of a UWB signal to be well below
the noise floor. On the other hand, the transmission quality of
a UWB system is determined by the received signal-to-noise
ratio (SNR). Given the stringent transmit power limitations,
maximization of the received SNR requires efficient utiliza-
tion of the bandwidth and power allowed by the FCC spectral
mask. The goal is to design the underlying UWB pulse shape
so as to optimize the spectral shape of the transmitted signal.

Unfortunately, the widely adopted Gaussian monocycle
[1] exhibits a poor fit to the FCC spectral mask and is not
desirable for practical usage. Recently, a new pulse [2] is de-
signed corresponding to the dominant eigenvector of a chan-

nel matrix that is constructed by sampling the spectral mask.
Although the generated pulse [2] conforms to the spectral
mask, it does not achieve the most efficient spectral utiliza-
tion, and requires a high sampling rate (64GHz) that could
lead to implementation difficulties. Digital filter design based
on the Parks-McClellan algorithm has also been exploited for
shaping UWB pulses under mask-fitting requirements [3].

In this paper, a new pulse design method based on
semidefinite programming (SDP) is introduced to achieve op-
timal spectral utilization at a relatively low sampling rate.
This pulse design framework capitalizes on the fact that many
of the desired properties of a waveform, including the opti-
mum spectral utilization, can be expressed as properties of
the auto-correlation of the waveform [6]. By reformulating
the design problem in terms of the autocorrelation sequence
of the “pulse-shaping” filter, many of the design constraints
such as the spectral mask constraints become linear, hence
the design problems become linearly constrained convex op-
timization problems. The transformed convex SDP problems
can be efficiently solved for globally optimum solutions via
off-the-shelf interior point methods, as we will demonstrate
in the ensuing design examples.

2. SIGNAL MODEL & PROBLEM STATEMENT

2.1. Signal Model

In a UWB system, every information symbol is conveyed over
a train of Nf repeated basic pulses, with one pulse per frame
of frame duration Tf . Each pulse p(t) is limited to an ultra-
short duration Tp of the nanosecond scale (Tp � Tf ), and
hence occupies an ultra-wide bandwidth. The equivalent sym-
bol signature waveform is ps(t) :=

∑Nf−1
n=0 p(t − cnTc −

nTf ) of symbol duration Ts := NfTf , where the sequence

{cn}Nf−1
n=0 represents the user-specific pseudo-random time-

hopping (TH) code with cnTc � Tf , ∀n ∈ [0, Nf − 1]. Let
bk ∈ {±1} be independent and identically distributed (i.i.d )
binary data symbols with energy Es spread over Nf frames.
Focusing on pulse amplitude modulation (PAM), we express
the transmitted PAM UWB waveform as:

u(t) =
√Es/Nf

∑
k bkps(t − kTs). (1)
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The power spectral density (PSD) of u(t) is then given by

φuu(f) = Es

Nf
· 1

Ts
|Ps(f)|2 (2)

where Ps(f) is the Fourier Transform (FT) of ps(t), whose
spectrum depends not only on p(t), but also on the TH code
{cn}Nf−1

n=0 . Specifically, Ps(f) can be expressed as

Ps(f) = P (f)
∑Nf−1

n=0 e−j2πfnTf e−j2πfcnTc (3)

where P (f) is the FT of p(t). Eq. (2) now becomes

φuu(f) =
Es

TsNf
|P (f)|2

∣∣∣
Nf−1∑
n=0

e−j2πf(nTf +cnTc)
∣∣∣
2

. (4)

When the TH code {cn}Nf−1
n=0 is independent and uniformly

distributed over [0, Nc − 1] with integer values, φuu(f) can
be approximated as [3]:

φuu(f) ≈ Es
|P (f)|2

Tf
. (5)

It is observed that the spectral shape of p(t) determines the
power spectrum of a UWB transmitter. Hence the UWB pulse
design problem is equivalent to designing the basic pulse p(t)
to meet all the system requirements.

2.2. Problem Statement

Based on the FCC spectral mask S(f) illustrated in Fig. 1,
we observe that most of UWB signal power should be allo-
cated to the 3.6–10.1GHz band, while considerable attenua-
tion is imposed in other regions of the spectrum, especially
for frequencies up to 3.1GHz. These constraints are designed
to avoid interference to existing systems. Accordingly, we
define Fp := {f |f ∈ [3.1, 10.6]GHz} as the UWB pass-
band, and Fs := {f |f ∈ {[0, +∞] − Fp}} as the UWB
stopband. To maximize the received SNR, the spectral shape
of a UWB pulse should optimally utilize the allowed band-
width and power spectra within the passband Fp, while at the
same time respecting the spectral mask S(f). The spectrum
utilization efficiency can be measured by the normalized ef-
fective signal power (NESP) ψ:

ψ =

∫
Fp

|P (f)|2 df∫
Fp

S(f) df
× 100%. (6)

The objective of our optimum pulse design problem is to find
p(t) that maximizes the NESP under the spectral mask con-
straint. This can be mathematically formulated as follows:

max
p(t)

ψ subject to |P (f)|2 ≤ S(f), ∀f. (7)

3. SEMIDEFINITE PROGRAMMING

In the next section we will transform (7) to a semidefinite
programming problem (SDP). Semidefinite programs can be
written in the form [4]:

min
X

tr(CX) subject to tr(AkX) = bk, X � 0, (8)

where X is the (symmetric) matrix variable, C and Ak are
symmetric matrices describing the objective and the kth linear
constraint, respectively, and there is a finite number of linear
equality constraints. (Recall that tr(CX) =

∑
i,j [C]ij [X]ij ,

where [·]ij denotes the (i, j)-th element of a matrix.) The con-
straint X � 0 constrains X to be (symmetric and) positive
semidefinite; i.e., zT Xz ≥ 0, ∀z ∈ Rn×1. Semidefinite pro-
gramming problems (SDPs) are convex and can be efficiently
solved in polynomial time using interior-point methods [5].
We now discuss the formulation of UWB pulse design as an
SDP over the autocorrelation of the pulse shape.

4. OPTIMAL UWB PULSE DESIGN

Consider a DSP-based pulse implementation scheme. Build-
ing upon the Gaussian monocycle q(t) that is readily avail-
able from a UWB transmitter, our synthesized pulse p(t) can
be written as [3]

p(t) =
∑L−1

i=0 giq(t − iTq), (9)

where Tq is the sampling interval, and the set {gi}L−1
i=0 con-

tains the L pulse coefficients to be designed according to (7).
The power spectrum Sp(f) := |P (f)|2 of p(t) is

Sp(f) = |Q(f)|2
∣∣∣
L−1∑
i=0

gie
−j2πifTq

∣∣∣
2

≈
∣∣∣
L−1∑
i=0

gie
−j2πifTq

∣∣∣
2

(10)
where Q(f) is the FT of q(t) which is sufficiently flat over
the bandwidth of our interest. The sampling frequency F q :=
1/Tq and the pulse duration Tp of p(t) are approximately re-
lated by Tp = LTq.

In addition to complying with the FCC spectral mask, we
impose a tighter spectral mask in the stop band in order to re-
duce interference to other services operating in that band. We
adjust Es to normalize the spectra components in the passband
to be 1 (0 dB), and impose a new mask Sa(f) given as below
(Fig. 1):

Sa(f) =

⎧⎨
⎩

0 dB, 3.1GHz ≤ f ≤ 10.6GHz;
−40 dB, 0 ≤ f < 3.1GHz;
−15 dB, f > 10.6GHz.

(11)

Now our pulse design problem can be reformulated as:
Design Problem: Given L and Sa(f), find a vector �g =
(g0, g1, . . . , gL−1) ∈ RL×1 that maximizes the normalized
effective signal power ψ subject to Sp(f) ≤ Sa(f), or show
that �g does not exist.
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Generally, this problem is not convex in �g and hence al-
gorithms for solving it must deal with the potential for local
solutions. Indeed, the filter design approach in [3] can be-
come trapped in a local optimum. In order to avoid these
problems, let us define (part of) the autocorrelation sequence
�r = (r0, r1, . . . , rL−1) of �g as:

rk =
∑L−1

i=0 gigi+k, k = 0, 1, . . . , L − 1. (12)

With r−k = rk , Sp(f) becomes a linear function of �r:

Sp(f) = r0 + 2
∑L−1

k=1 rk cos (2πkf). (13)

Using (13), the NESP ψ can be written as

ψ = r0 +
∑L−1

k=1
sin (2πkβ)−sin (2πkα)

kπ(β−α) rk, (14)

where α = Tq · 3.1GHz and β = Tq · 10.6GHz. The
metric in (14) is also linear in �r. The coefficients form a
metric vector �w := (w0, w1, . . . , wL−1)T with w0 := −1
and wi := −(1/kπ(β − α))(sin (2πkβ) − sin (2πkα)), for
1 ≤ i ≤ L − 1.

It is evident from (13) that all the mask constraints in-
volved are linear with respect to �r, and from (14) that the
objective is also linear. The remaining constraint is to en-
sure that �r is a valid autocorrelation; i.e., ∃�g ∈ RL such that
rk =

∑L−1
i=0 gigi+k. Fortunately, the linear constraint in (15c)

below is necessary and sufficient for the existence of such a
�g. Our design problem can now be written as the following
convex optimization problem:

min
�r

−ψ (15a)

s.t. Sp(f) ≥ 0, ∀f (15b)

Sp(f) ≤ 0dB, ∀f (15c)

Sp(f) ≤ −15dB, f > 10.6GHz (15d)

Sp(f) ≤ −40dB, 0 ≤ f < 3.1GHz. (15e)

Such a problem formulation is a semi-infinite linear pro-
gramme, in the sense that it has a linear objective and an in-
finite number of linear constraints. (Each of (15b)-(15e) gen-
erates one linear constraint for each real value of f .) We can
obtain approximately the feasible set generated by this infi-
nite number of constraints by discretizing them—something
that leads to a finite linear program. Alternatively, the infi-
nite number of constraints can be precisely transformed into a
finite number of linear constraints on some (symmetric) posi-
tive semidefinite matrices, which leads to an (exact) SDP for-
mulation of (7). In the cases of (15b) and (15c) the trans-
formation corresponds to instances of the Positive-Real and
Bounded-Real Lemmas from systems theory, respectively, but
the transformations of (15d) and (15e) require more recent re-
sults [6]. To describe those transformations succinctly, we
will borrow two adjoint operators L∗(·) and Λ∗(·; ·; ·) that are
defined by Eqs. (35) and (36) in [6], respectively.

• The constraint in (15b) holds if and only if there exists
a symmetric positive semidefinite (S-PSD) matrix X ∈
RL×L, such that

L−1−n∑
k=0

[X]k,k+n = rn, n = 0, 1, . . . , L − 1. (16)

• The constraint in (15c) holds if and only if there exists
a S-PSD matrix X1 ∈ RL×L such that

L−1−n∑
k=0

[X1]k,k+n = (0dB)δ[n]−rn, n = 0, 1, . . . , L−1.

(17)

• The constraint in (15d) holds if and only if there exist
S-PSD matrices X2 ∈ RL×L and Z1 ∈ R(L−1)×(L−1)

such that

L∗(X2)+Λ∗(Z1; β; 2π−β) = (−15dB+r0)δ[n]−2rn,
(18)

for n = 0, 1, . . . , L − 1, where β = Tq · 10.6GHz.
• The constraint (15e) holds if and only if there exist S-

PSD matrices X3 ∈ RL×L and Z2 ∈ R(L−1)×(L−1)

such that

L∗(X3)−Λ∗(Z2; α; 2π−α) = (−40dB+r0)δ[n]−2rn,
(19)

for n = 0, 1, . . . , L − 1, where α = Tq · 3.1GHz.

Using the above expressions, pulse design problems can be
precisely formulated as a SDP. We now provide two instances
of these formulations.
I. Spectral Utilization Problem: The maximum spectral uti-
lization for a fixed filter length L, is achieved by a filter whose
autocorrelation achieves:

min
�r

�wT�r (20)

s.t. (16), (17), (18), (19),
X,X1,X2,X3,Z1,Z2 � 0.

This problem can be efficiently solved with an existing SDP
package [5] to produce the optimal autocorrelation sequence
�r. Spectral factorization [7] is then applied to extract the op-
timal pulse coefficients �g.
II. Pulse Duration Problem: The minimum pulse duration
Tp = LTq for a given threshold γ on the spectra utilization
ratio ψ, is achieved by a filter whose autocorrelation achieves:

min L (21)

s.t. �wT�r ≤ −γ,

(16), (17), (18), (19),
X,X1,X2,X3,Z1,Z2 � 0.

For a fixed L, the constraints in (21) generate a convex fea-
sible set, and hence infeasibility of (21) with a fixed L can
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be reliably determined. Therefore, (21) can be solved by a
bisection search on L for the feasibility/infeasibility bound-
ary of (21). At each stage of this SDP-BS method we solve
the semidefinite feasibility problem described by (21) for the
current value of L.

5. DESIGN EXAMPLES

To lessen the hardware implementation difficulty, we set the
sampling frequency Fq to be a relatively low value of 25GHz
and accordingly the sampling interval Tq is 40ps. We first
solve a Spectra Utilization Problem (with L = 33) using
the SeDuMi SDP package for MATLAB [5]. The generated
pulse spectrum is depicted in Fig. 1. Compliant to the FCC
mask, the synthesized pulse achieves a maximum NESP of
ψ = 83.77%. In contrast, the method in [2] uses a sampling
rate of 64GHz to yield a NESP value of approximately 39%.
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Fig. 1. Results for a Spectra Utilization Problem (L=33):
Spectrum vs. f (GHz).

Considering a Pulse Duration Problem with a constraint
γ = 85%, we use the SDP-BS method to obtain the mini-
mum L satisfying ψ ≥ γ. It is shown from Fig. 2 that when
L = 36 and L = 37, one has ψ = 84.97% and ψ = 85.47%
respectively, bordering on the threshold. Choosing L = 37,
we obtain our optimally synthesized pulse p(t) with duration
Tp = LTq = 1.48ns. Fig. 2 is instrumental in striking a bal-
ance between performance (spectrum utilization ratio ψ) and
complexity (filter length L). Since ψ increases dramatically
for small to medium L, but increases fairly slowly for large L,
the constraint γ should be chosen carefully in order to achieve
an appropriate design tradeoff.

6. CONCLUSIONS

We have proposed a new pulse design method for UWB ra-
dios which achieve the maximum effective power, while com-
plying with the FCC spectral mask constraint. By formulat-
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Fig. 2. Results for a Pulse Duration Problem (γ = 85%).

ing the pulse design problem as a semidefinite programming
problem (SDP), our method is able to efficiently obtain op-
timal designs, as our examples have illustrated. The advan-
tages of this convex optimization based pulse design frame-
work will become more evident as other system-level con-
straints such as robustness to timing jitter is incorporated into
the waveform design. We will explore these extensions along
with comparisons to [3] in our future work.
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