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ABSTRACT

In this paper we propose two innovative detection schemes for
IR-UWB communication systems based on the autocorrelation re-
ceiver and differential detection. The proposed schemes avoid the
need for a complex analog multiplier by employing: i) a limiter
in the reference branch only, or ii) employing also a limiter in
the signal branch. Analytical models for the statistics of the de-
cision variables are presented for the receivers, and the analytical
and simulated BER exhibit an excellent agreement. We point out
the dependence of the performance on some important system pa-
rameters, that shows the system design trade-off between receiver
complexity and performance.

1. INTRODUCTION

Before the ultra wideband (UWB) communication system promises
of high data rate, low power consumption at low cost become a re-
ality, signal processing research on topics as the design of practical
algorithms for synchronization and channel estimation, as well as
the design of a feasible receiver, needs to be further addressed.

The optimal detector for the AWGN channel requires a locally
generated template waveform, composed of a low duty-cycle se-
quence of sub-nanosecond pulses, perfectly synchronized to the
received sequence. Autocorrelation receivers (ACR) simplify and
partially solve this issue by correlating the received signal in the
current transmission interval with a waveform reference transmit-
ted in a previous interval [1]. The basic difference from the op-
timum matched filter is that this reference is corrupted by noise.
Transmitted reference (TR) ACRs that operate by transmitting a
pair of unmodulated and modulated signals and employing the for-
mer to demodulate the latter, are studied in [2], [3].

Here we consider ACRs with differential detection schemes
that employ as reference template the previous symbol waveform
[4], thus avoiding the transmission of unmodulated pulses and there-
fore doubling the effective bit rate. The promise of a cheap re-
ceiver might be overcome by the requirement of an accurate and
precise analog multiplier. Therefore, we propose as first alterna-
tive an ACR that passes the template signal through a limiter, so
that the output waveform can assume only two discrete values, i.e.
+1,−1, and a second one that employs limiters in both the re-
ceiver’s branches. In both the cases, the analog multiplier can be
removed and substituted by cheaper components. We consider an
AWGN channel and we develop an accurate analytical model of
the decision variables statistics. We also derive simple BER ex-
pressions for the case of rectangular monocycles, that provide a

good understanding of the system parameters influence on the re-
ceiver performance.

2. SIGNAL DEFINITION

We consider a binary set of signal waveforms S = {s0(t) =
s(t), s1(t) = −s(t)}, where s(t) is

s(t) =

Ns−1∑
j=0

w(t − jTf − cjTc), 0 ≤ t ≤ NsTf , (1)

and w(t) is a very short pulse typically of duration Tw < 1 ns,
that provides the ”ultra wide” bandwidth W . The time frame Tf

is the average pulse repetition time, Ns is the number of pulses
transmitted per symbol and cjTc determines the pulse position
within a frame. Without loss of generality, we assume cj = 0,
j = 0, . . . , Ns − 1. We call the transmission of ”1” H1 and the
transmission of ”0” H0. When H0 is true, the transmitter gener-
ates the same signal waveform as transmitted in the previous sym-
bol time Ts = NsTf . When H1 is true, the transmitter switches to
the other signal waveform. In the following, we assume H0 to be
true and therefore the received waveform r(t), after a rectangular
filter of bandwidth W , is

H0 : r(t) = sm(t) + sm(t − Ts) + n(t), 0 ≤ t ≤ 2Ts, (2)

where m = 0, 1 and the noise n(t) is a zero mean, bandlimited
white Gaussian random process, with autocorrelation function

Rn(τ ) � E[n(t)n(t + τ )] = N0W sinc(2πWτ ). (3)

3. AUTOCORRELATION RECEIVERS

In this section we describe three different kinds of ACRs, as shown
in Fig. 1, and we perform the statistical analysis of the observed
variables r(I), r(II), r(III), where the notation (·)(I), (·)(II), (·)(III)

refers respectively to the first, second and third receiver.

3.1. Differential Autocorrelation Receiver

The receiver correlates the received signal with a symbol-time de-
layed version, as shown in Fig. 1. The signal template is corrupted
by noise, but is synchronized to the used pulses sequence with-
out any acquisition algorithm. At the output of the integrator the
observed variable r(I), assuming that H0 is true, is given by

r(I) =

∫ 2Ts

Ts

r(t)r(t− Ts)dt = r(I)
s + r(I)

n + ne, (4)
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Fig. 1. Differential ACRs. ACR(I): No limiters; ACR(II): One
limiter; ACR(III): Two limiters.

where

r(I)
s =

∫ Ts

0

s(t)2dt =

Ns−1∑
j=0

∫ Tf

0

w(t)2dt = NsEw = Es, (5)

r(I)
n =

∫ Ts

0

s(t)[n(t) + n(t − Ts)]dt, (6)

ne =

∫ Ts

0

n(t)n(t + Ts)dt. (7)

It is easy to see that r
(I)
n is a Gaussian random variable (RV) with

expectation E[r
(I)
n ] = 0 and variance V ar[r

(I)
n ] = N0Es, N0/2

being the power spectral density of the noise within the bandwidth
[0, W ]. We show that also ne is a Gaussian RV. By using the
Shannon sampling theorem, we have

n(t)n′(t) =

N∑
i=0

n(i)sinc(t− i

2W
)

N∑
j=0

n(j+N)sinc(t− j

2W
) (8)

where N = 2WTs is the number of independent samples, n′(t) �
n(t+Ts) and n(i) = n(t)|t=(i/2W ), n(j+N) are independent sam-
ples of a Gaussian random process, with zero mean and variance
σ2

n = N0W . Since usually Ts >> 1/2W , by substituting the
following approximation

∫ Ts

0

sinc(t − i

2W
)sinc(t − j

2W
)dt �

{
1

2W
i = j

0 i �= j
(9)

in (8), we can rewrite (7) as

ne =
1

2W

N∑
i=0

n(i)n(i+N) �
N∑

i=0

Ni, (10)

where Ni = (n(i)n(i+N))/2W are i.i.d RVs with E[Ni] = 0

and V ar[Ni] = (1/2W )2(N0W )2 = (N0/2)
2. From the central

limit theorem, it follows that ne is a Gaussian RV with

E[ne] = 0, V ar[ne] = 2WTs(N0/2)
2. (11)

The observed variable r(I) is therefore a Gaussian RV, with

E[r(I)] = Es, V ar[r(I)] = N0

(
Es + WTs

N0

2

)
. (12)

3.2. Differential Autocorrelation Receiver with One Limiter

The delayed version of the received signal is passed through a non-
linear circuit. The output z(t) = sgn[r(t)] is equal to +1 for pos-
itive values of the input r(t) and equal to -1 for negative values,

as shown in Fig. 1. The implementation of this receiver is simpler
and therefore the cost will be lower. The output r(II), given that
H0 is true, is

r(II) =

∫ 2Ts

Ts

r(t)z(t − Ts)dt =

∫ Ts

0

[s(t) + n′(t)]z(t)dt (13)

=

Ns−1∑
j=0

rwj +

Ns−1∑
j=0

rnwj +

Ns−1∑
j=0

rnj , (14)

where z(t) is given by

z(t) =

Ns−1∑
j=0

zwj(t) +

Ns−1∑
j=0

znj(t), (15)

zwj(t) =

{
sgn[w(t−jTf ) + n(t)] jTf ≤ t≤jTf+Tw

0 otherwise,
(16)

znj(t) =

{
sgn[n(t)] jTf + Tw ≤ t ≤ (j + 1)Tf ,
0 otherwise,

(17)

for j = 0, . . . , Ns − 1, and then

rwj =

∫ jTf +Tw

jTf

w(t − jTf )zwj(t)dt (18)

rnwj =

∫ jTf +Tw

jTf

n′(t)zwj(t)dt (19)

rnj =

∫ (j+1)Tf

jTf +Tw

n′(t)znj(t)dt. (20)

We first compute the expected value of r(II). It is easy to see
that{rnwj , rnj} are zero mean RVs, and therefore E[r(II)] =
NsE[rwj ]. The non-stationary random process zwj(t) assumes
one out of two values {sgn[w(t− jTf )],−sgn[w(t− jTf )]}, and
its expectation is

E[zwj(t)] = [1 − 2q(t − jTf )]sgn[w(t − jTf )], (21)

where q(t) = Pr[zw0(t) = sgn[w(t)]] equals to

q(t) = Pr[n(t) ≥ |w(t)|] = Q(
|w(t)|

σn
). (22)

By recalling that x · sgn(x) = |x|, it follows that the expected
value of r(II) conditioned to H0 is

E[r(II)] = Ns

∫ Tw

0

[1 − 2Q(
|w(t)|

σn
)]|w(t)|dt. (23)

It can be shown that Cov[rnwj , rnj ] � 0, and therefore it is
straightforward to see that all the RVs {rwj , rnwj , rnj}Ns−1

j=0 are
mutually uncorrelated. Hence the computation of the variance is
reduced to

V ar[r(II)] = Ns(V ar[rwj ] + V ar[rnwj ] + V ar[rnj ]), (24)

V ar[rwj ] =

∫ Tw

0

∫ Tw

0

w(t)w(λ)Rzw(t, λ)dtdλ −E2[rwj ], (25)

V ar[rnwj ] =

∫ Tw

0

∫ Tw

0

Rn(λ − t)Rzw(t, λ)dtdλ, (26)

V ar[rnj ] =

∫ Tf

Tw

∫ Tf

Tw

Rn(λ − t)Rzn(t, λ)dtdλ, (27)
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where Rzw(t, λ), Rzn(t, λ), are the autocorrelation functions of
the signal waveforms zwj(t) and znj(t). According to the arcsin
law [5], Rzn(t, λ) is given by

Rzn(τ ) = 2/π arcsin ρ(τ ), (28)

with τ = λ−t and ρ(τ ) = Rn(τ )/Rn(0). We substitute (3), (28)
in (27), obtaining

V ar[rnj ] =

∫ Tf−Tw

−(Tf−Tw)

(Tf− Tw− |τ |)Rn(τ )Rzn(τ )dτ (29)

� 4

π
N0W (Tf−Tw)

∫ Tf−Tw

0

ρ(τ ) arcsin ρ[(τ )]dτ (30)

For brevity of notation we refer to the integrand function in (30)
with the symbolic expression Ξ(τ ). By considering the series ex-
pansion of the function arcsin[ρ(τ )], we have

Ξ(τ ) � ρ(τ )2 +
ρ(τ )

6

4

, |τ | ≥ 1/5W (31)

Ξ(τ ) � 5W [Ξ(
1

5W
) − π

2
]τ +

π

2
� mτ +q |τ |≤ 1

5W
(32)

where the proof of (32) is omitted for lack of space. We note that∫ Tf−Tw

0

Ξ(τ )dτ =

∫ Tf−Tw

0

[
ρ2(τ ) +

ρ4(τ )

6

]
dτ

+

∫ 1
5W

0

{(mτ + q) − [ρ(τ )2 +
ρ(τ )

6

4

]}dτ (33)

� 1

W

[
1

2π

5π

9
+

π − 0.92

10
− 1.215

2π

]
, (34)

and therefore it follows

V ar[rnj ] � 0.39(Tf − Tw)N0. (35)

For monocycles assuming only positive values, the autocorrelation
function Rzw(t, λ) is upper bounded by the constant ’1’. It follows
that

V ar[rnwj ] ≤ 2

∫ Tw

0

(Tw − |τ |)Rn(τ )dτ (36)

� 2TwN0W

∫ Tw

0

ρ(τ )dτ (37)

� TwN0

π

(
π

2
− cos(2πc)

2πc
− sin(2πc)

(2πc)2

)
, (38)

where the constant c = TwW is the time-bandwidth product of
the monocycle waveform. For instance, in case of c = 1, we
have V ar[rnwj ] � 0.45TwN0. Simulation results show that for
Ew/N0 values larger than 3dB, V ar[rnwj ] is well approximated
by (38). Furthermore, for a rectangular monocycle it can be shown
that

V ar[rwj ] ≤ 2

π

√
2π

Ew

N0
e
− Ew

2N0 TwN0, (39)

� 0.18TwN0, (40)

where (40) holds for the Ew/N0 values of interest. Therefore we
have

V ar[r(II)] � Ns[0.39Tf + 0.24Tw ]N0, (41)

The observed variable r(II) is the sum of Ns i.i.d. RVs, and there-
fore for large Ns values is a Gaussian RV with mean value given
by (23) and with variance (41).

3.3. Differential Autocorrelation Receiver with Two Limiters

In the third detector, as illustrated in Fig. 1, the received signal in
both the branches is passed through a limiter circuit. The decision
variable r(III), conditioned to H0, is

r(III) =

∫ 2Ts

Ts

z(t)z(t − Ts)dt =

Ns−1∑
j=0

rjw +

Ns−1∑
j=0

rjn, (42)

where

rjw =

∫ jTf +Tw

jTf

z′
wj(t)zwj(t)dt (43)

rjn =

∫ (j+1)Tf

jTf +Tw

z′
nj(t)znj(t)dt, (44)

and z′
wj(t), z′

nj(t) are defined as in (16), (17), with n′(t) instead
of n(t). The expected value of r(III) can be easily computed as

E[r(III)] = Ns

∫ Tw

0

[
1 − 2Q

( |w(t)|
σ

)]2

dt. (45)

For the variance evaluation we can follow an analog approach as
for the differential autocorrelation receiver with one limiter. Since
E[rjwrjn] − E[rjw]E[rjn] � 0, we obtain

V ar[r(III)] � Ns(V ar[rjn] + V ar[rjw]) (46)

V ar[rjw]) � 0.2T 2
w (47)

V ar[rjn] =

∫ Tf

Tw

∫ Tf

Tw

(
2

π
arcsin[ρ(λ−t)]

)2

dtdλ (48)

� 8

π2
(Tf − Tw)

∫ Tf−Tw

0

(arcsin[ρ(τ )])2 dτ, (49)

where (47) holds for the cases of interest and goes to zero for large
Ew/N0 values. By expanding arcsin(τ ) in series and in analogy
with (31) - (33), we have

V ar[r(III)] � Ns[0.31
Tf − Tw

W
+ 0.2T 2

w ], (50)

with r(III) described by the statistic of a Gaussian RV.

4. PERFORMANCE COMPARISON

All the decision variables r(I), r(II), r(III) are Gaussian RVs and
therefore the bit error probability conditioned to H0 of the i − th
receiver is given by

P (e|H0)
(i) = Q

(√
γ

(i)
o

)
, (51)

with γ
(i)
o = E[r(i)]2/V ar[r(i)]. Observing that P (e|H0)

(i) =

P (e|H1)
(i), it is clear that the probability of error P (e) is equal

to P (e|H0)
(i). The key parameter that allows UWB systems to

operate under the noise level is the processing gain Gp, defined as

Gp =
W

Rb
= WNsTf = cNs

Tf

Tw
= NsG

′
p, (52)

where Rb is the bit rate, and G′
p � cTf/Tw. The plot of (51),

i = II , compared to the simulated BER results, proves the out-
standing accuracy of the statistical analysis, as shown in Fig. 2.
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Fig. 2. Receivers performance, comparison of simulated (s.) and
analytical (a.) results, and influence of the parameter G′

p.

The plot of the probability of error of receiver II, for a fixed Gp

but for different G′
p values, shows the different role of the process-

ing gain terms, and the BER curves of receiver (I) and (III) provide
a first comparison of the receivers performance. If we denote the
received power as Pr , we have the following relationship

Es

N0
=

Pr

N0W
Gp = Gpγin, (53)

where γin � Pr/NOW , and we can derive a closed form expres-
sion of (51) as a function of γin, G′

p, Ns. However the analytical

expressions for γ
(i)
o are quite complex, apart from the case of the

rectangular monocycle waveform, where we obtain

γ(I)
o � Gpγin

1 + (2γin)−1
, (54)

γ(II)
o � 2.5Nsγin

[
1 − 2Q

(√
γinG′

p

)]2

, (55)

γ(III)
o � 3.22

Ns

G′
p

[
1 − 2Q

(√
γinG′

p

)]4

. (56)

For the same γin, we see that the performance of receiver I is pro-
portional to the processing gain Gp, while beyond a certain G′

p

level, that depends on γin, the term in brackets in (55) stays close
to ’1’ and there is no further improvement in the receiver II bit er-
ror rate. In the third receiver, an increment of the processing gain
due to G′

p could lead to either higher or even lower γo values, de-

pending on γin. In Fig. 3, the contour lines of the ratios γ
(i)
o /γ

(j)
o

are plotted. This figure shows the influence of the parameters γin,
G′

p(= Gp/Ns) on the receiver performance.

5. CONCLUSIONS

In order to obtain a simple and cheap receiver implementation,
two modified versions of the autocorrelation receiver using a linear
multiplier and based on differential detection, are examined. The
statistical analysis derived for the AWGN channel provides for the

−15 −10 −5 0 5 10
2

4

6

8

10

12

14

16

18

20

γ
in

 [dB]

G’
p

G
p
 = 20

1
1

2

2
2

2

4

4

4

2

2

2

2

4

4

4

4
1

2

2

2

4

4

4

γ
o
(I)/γ

o
(II)

γ
o
(I)/γ

o
(III)

γ
o
(II)/γ

o
(III)

Fig. 3. Contour lines of the ratios γ
(i)
o /γ

(j)
o showing the influence

of the parameters γin and G′
p on the receivers performance.

case of rectangular monocycles simple and insightful BER equa-
tions, that highlight the importance of an accurate choice of the
system parameters involved in the processing gain. It is noticeable
that the autocorrelation receiver with the non-linear limiter device
provides a lower BER than the receiver with no limiters, when the
pulse repetition frequency is close to the signal bandwidth. This
limitation could be restrictive for a time-hopping multiple access
system. However, due to low transmit power requirements, this re-
ceiver might be an interesting candidate for very short-range net-
work, as the personal area network, where the multi-user capabil-
ity is not so urgent. Moreover, we show that for pulse repetition
frequencies low enough to allow consistent multiple users process-
ing gain, the output signal-to-noise ratios of the receivers with one
and two limiters are only 3 dB worse than the one of the autocor-
relation receiver with a linear multiplier, and therefore the receiver
choice will be a trade-off between complexity and performance.
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