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ABSTRACT
Ultra-Wideband (UWB) radio is gaining increasing attention thanks
to its attractive features that include low-power low-complexity
baseband operation and ample multipath diversity. Realization
of its potential, however, faces the challenge of low-complexity
high-performance timing acquisition. In this paper, we develop
a blind timing acquisition algorithm for frame-level synchroniza-
tion. Relying on simple integrate-and-dump operations over one
symbol duration, our algorithm exploits the rich multipath diver-
sity enabled by UWB transmissions. It outperforms existing blind
algorithms and has comparable performance to data-aided ones.
Equally attractive is its applicability to UWB links with or without
time hopping (TH), over frequency-flat or multipath channels. It is
also worth stressing that our “dirty” template based scheme is able
to achieve timing synchronization at any desirable resolution and
is readily applicable to non-UWB systems, so long as inter-symbol
interference is absent.

1. INTRODUCTION

Since the recent release of the FCC spectral mask, UWB radio
has been attracting growing interest especially in the area of short-
range indoor wireless communications. This interest stems from
its low-power low-complexity baseband operation and ample mul-
tipath diversity; see e.g., [1] and references therein. In realizing
the unique benefits of UWB radios, clock synchronization consti-
tutes a major challenge, the difficulty of which is accentuated due
to the impulse-like low-power UWB transmit-waveforms.

Though straightforward, peak-picking the output of a sliding
correlator with the transmit-waveform template is not only sub-
optimum in the presence of dense multipath, but also results in
unacceptably slow acquisition speed and prohibitive complexity
when one has to perform exhaustive search over thousands of bins
(chips). Attempts to improve sliding-correlator based acquisition
speed include a coarse bin reversal search considered in [2] over
a noiseless non-modulated pulse sequence and a coded beacon se-
quence in conjunction with a bank of correlators [3].

Recently, non-data aided and data-aided timing acquisition and
tracking schemes have been developed for UWB transmissions
through dense multipath channels [4, 5]. However, [4] relies on the
cyclostationarity that arises only when there is no TH within each
symbol and requires dense multipath that fills up the frame. More-
over, timing acquisition performance suffers from limited multi-
path energy capture [4]. On the other hand, the data-aided scheme
relies on a judiciously designed training pattern and exploits the
rich multipath diversity provided by UWB channels [5]. But its
high performance comes at the price of reduced bandwidth and/or
power efficiency.
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In this paper, we develop a blind timing acquisition algorithm
based on integrate-and-dump operations that collect the available
multipath diversity1. Consequently, energy capture is considerably
improved, in comparison to the non-data aided schemes in [4]. As
a result, even with medium length observation intervals, timing ac-
quisition and symbol detection performance is considerably better
than existing blind algorithms, and is comparable to that of the
data-aided scheme in [5].

Similar to [5], but unlike early-late gate and sliding-correlator
based schemes, our algorithm does not assume a clean template
at the receiver. At the price of using a noisy (“dirty”) template,
we gain in energy capture whether or not TH is present; and allow
for not only frequency-flat, but also frequency-selective channels.
Equally important, our scheme is able to achieve timing at any
desirable resolution. But due to space limitation, we will focus on
frame-level acquisition in this paper. Compared to [5] that utilizes
training symbols, our blind scheme saves bandwidth and power,
and is attractive for “cold start-up” scenarios.

Section 2 outlines our system model and transceiver operating
conditions. Section 3 derives the novel blind acquisition algorithm.
Simulation results and summarizing remarks are given in Sections
4 and 5, respectively.
Notation: �·� and �·� stand for integer ceiling and floor operations,
respectively; (A mod B) denotes the modulo operation, where A
and B are both real.

2. MODELING AND PROBLEM STATEMENT
In UWB radio, every information symbol is conveyed by Nf data
modulated ultra short pulses p(t), each over one frame of dura-
tion Tf . The resultant symbol duration is thus Ts = NfTf sec-
onds. With p(t) having duration Tp(� Tf ) at the sub-nanosecond
scale, the transmitted signal occupies UWB with bandwidth Bs ≈
1/Tp. UWB radio generally adopts modulation methods such as
pulse position modulation (PPM), and pulse amplitude modulation
(PAM). In this paper, we will deal with binary antipodal PAM,
though generalization to PPM is possible.

When multiple users are present, user separation can be ac-
complished with pseudo-random TH codes, which shift the pulse
positions at multiples of the chip duration (Tc) [1]. Letting cnf ∈
[0, Nc − 1] denote the TH code during the nf th frame with Nc :=
�Tf/Tc� chips, the transmitted symbol waveform pT (t) contain-

ing Nf pulses is given by pT (t) :=
∑Nf−1

nf =0 p(t−nfTf −cnf Tc).
The multipath channel is modeled as a tapped-delay line, with

L + 1 taps {αl}L
l=0, and delays {τl}L

l=0 satisfying τl < τl+1,
∀l. Being quasi-static, the channel coefficients and delays remain
invariant over one transmission burst, but are allowed to change
across bursts. To isolate the multipath spreading effects from the

1This is reminiscent of pilot waveform assisted modulation [6], and
transmitted reference (TR) approaches to channel estimation [7], but at the
timing acquisition stage (no TR pulses are needed).
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propagation delay τ0, all path delays can be uniquely casted into:
τl,0 := τl − τ0. Focusing on a single user link, and treating multi-
user interference (MUI) as noise, the waveform arriving at the re-
ceiver is given by:

r(t) =
√
E

L∑
l=0

αl

+∞∑
k=0

s(k)pT (t − kTs − τl,0 − t2) + w(t),

where the noise term w(t) includes the MUI, and the first arrival
time t2 is nothing but the transmission starting time t1 augmented
by the propagation delay τ0.

To simplify notation, we introduce the received symbol wave-
form:

pR(t) :=

L∑
l=0

αlpT (t−τl,0)=

Nf−1∑
nf =0

h(t−nfTf −cnf Tc), (1)

where h(t) :=
∑L

l=0 αlp(t−τl,0) is the overall channel capturing
both pulse shaper and multipath effects. It follows that the received
noisy signal is:

r(t) =
√
E

+∞∑
k=0

s(k)pR(t − kTs − t2) + w(t). (2)

Evidently, selecting Tf ≥ τL,0 + Tp, and c0 = cNf−1 = 0,
the duration of pR(t) is confined over [0, Ts), and inter-symbol
interference is avoided.

Although the received waveform starts at t2 = t1 + τ0, the
receiver knows neither the transmission starting time t1, nor the
propagation delay τ0. Upon detecting the energy/amplitude change
in the arriving signals, the receiver initiates timing acquisition at
t3 (> t2). To acquire timing, the receiver aims at the starting time
of a symbol starting after, or at, t3; i.e., at time t = t3, if (t3 − t2)
is an integer multiple of Ts, or, t = t2 + �(t3 − t2)/Ts�Ts, other-
wise. Notice that t1 plays no role, while the arrival time t2 serves
as reference. Without loss of generality, we set t2 = 0. Further,
defining N := �t3/Ts� and ε := t3 − NTs, timing acquisition
amounts to correcting t3 by an integer number nε ∈ [0, Nf −1] of
frames, such that t3 +nεTf is close to either NTs, or, (N +1)Ts,
within ambiguity of Tf seconds.

In the next section, we develop a low complexity blind syn-
chronization algorithm that relies on integrate-and-dump opera-
tions, one per symbol duration, to acquire timing with frame-level
resolution.

3. BLIND TIMING ACQUISITION

The first step of our blind timing acquisition algorithm is to take
from the received waveform a segment of duration Ts, starting at
time (t3 + nTf + mTs), for integers n ∈ [0, Nf ), and m ∈
[0, M − 1], with MTs being the observation interval. Denoted by
xn,m(t), this waveform can be expressed as:

xn,m(t) = r(t + mTs + nTf + t3), t ∈ [0, Ts). (3)

Ignoring noise for brevity, and using t3 = NTs + ε, where ε ∈
[0, Ts) by definition, we can express the noise-free xn,m(t) as:

xn,m(t) =
√
E

+∞∑
k=0

s(k)pR(t −Dk,n,m), ∀t ∈ [0, Ts) (4)

where the aggregate delay is given byDk,n,m := (k−N−m)Ts−
(nTf + ε).

Since pR(t) has finite support (0, Ts), only a finite number of
k values contribute non-zero summands in (4), for any given m, n,
and t3. To find such k values, let us first express (nTf + ε) as an
integer multiple of Ts plus a residue

ns := �(ε + nTf )/Ts�, and εs := ε + nTf − nsTs, (5)

where possible ns values are 0 and 1, and εs ∈ [0, Ts). With
this notation, we deduce that the k values that contribute non-zero
summands in (4) are as follows:

k = N + m + ns + [0, 1]. (6)

Recalling that k denotes symbol index, (6) indicates nothing but
the indices of the symbols that correspond to (possibly) non-zero
coefficients in (4). In other words, all other symbols have zero co-
efficients and thus contribute zero summands in (4). Consequently,
(4) becomes:

xn,m(t)=
√
E

1∑
k=0

s(k + N + m + ns)pR(t − kTs + εs). (7)

Notice that for fixed n and ε, εs is uniquely determined. Moreover,
for any fixed k, pR(t− kTs + εs) depends only on εs. As a result,
as m changes, pR(t − kTs + εs) corresponding to each k stays
invariant for any given n and ε.

As outlined in the introduction, we will estimate nε relying
the cross correlation between successively observed waveforms
xn,m(t) of duration Ts each. Integrating-and-dumping, the prod-
uct of adjacent waveforms xn,m(t) and xn,m+1(t) we find:

Rxx(n; m) :=

∫ Ts

0

xn,m(t)xn,m+1(t)dt

= E
∫ Ts

0

1∑
k=0

s(k + N + m + ns)pR(t − kTs + εs)

×
1∑

k=0

s(k + N + m + ns + 1)pR(t − kTs + εs)dt

= E · s(N + m + ns + 1)

[
s(N + m + ns)

∫ Ts

εs

p2
R(t)dt

+s(N + m + ns + 2)

∫ εs

0

p2
R(t)dt

]
,

(8)

where in establishing the last equality, we used the fact that
∫ Ts

0
pR

(t + εs)pR(t + Ts + εs)dt vanishes due to the finite support of
pR(t), and substitutions

∫ Ts

εs
p2

R(t)dt =
∫ Ts

0
p2

R(t + εs)dt, and∫ εs

0
p2

R(t)dt =
∫ Ts

0
p2

R(t − Ts + εs)dt. Taking absolute value
of Rxx(n; m) removes the dependence on the unknown symbol
s(N + m + ns + 1), and yields:

|Rxx(n; m)| = E ·
∣∣∣∣s(N + m + ns)

∫ Ts

εs

p2
R(t)dt

+s(N + m + ns + 2)

∫ εs

0

p2
R(t)dt

∣∣∣∣ .

Moreover, with information conveying symbols s(k) ∈ {±1} be-
ing independent, taking conditional expectation of the absolute
value |Rxx(n; m)| for any n ∈ [0, Nf − 1], gives rise to:

Rxx(n):=E{|Rxx(n; m)| | h(t), ε} (9)

=
E
2

∣∣∣∣
∫ Ts

εs

p2
R(t)dt−

∫ εs

0

p2
R(t)dt

∣∣∣∣+ E
2

∫ Ts

0

p2
R(t)dt.
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Notice that the expectation removes the dependence of the absolute
value |Rxx(n; m)| on N , m, and ns. But as we will show next,
Rxx(n) is still dependent on n, for any timing offset ε. In fact, it
is this dependence that enables us to acquire timing information.

Recalling that the symbol waveform pR(t) contains Nf pulses,
we infer that the first integral corresponds to pulses with indices
from �εs/Tf� to Nf − 1, while the second integral corresponds to
pulses with indices from 0 to �εs/Tf�− 1. In the absence of a TH
code, i.e., cnf = 0, ∀nf ∈ [0, Nf − 1], the two integrals in (9)
can be respectively expressed (in closed-form) as:

∫ Ts

εs

p2
R(t)dt =

(
Nf −

⌊
εs

Tf

⌋)
Eh(Tf ) − Eh(εf ),

∫ εs

0

p2
R(t)dt =

⌊
εs

Tf

⌋
Eh(Tf ) + Eh(εf ),

(10)

where Eh(τ) :=
∫ τ

0
h2(t)dt, and εf := (εs mod Tf ). From the

definition of εs, it follows that εf = (ε mod Tf ). In the presence
of a TH code, the two integrals cannot be expressed in such a neat
form. But as shown in [5], they do not vary much (with or without
TH), for various εs values and channel realizations.

Substituting (10) into (9) results in:

Rxx(n) =
E
2

∣∣∣∣
(

Nf − 2

⌊
εs

Tf

⌋)
Eh(Tf ) − 2Eh(εf )

∣∣∣∣
+

E
2

NfEh(Tf ). (11)

Since εs ∈ [0, Ts) by definition, we deduce that �εs/Tf� falls in
the range [0, Nf − 1]. Consequently, it can be readily verified that
the maximum of Rxx(n) in (9) is as follows:

max
n

{Rxx(n)} (12)

= ENfEh(Tf ) − E min{Eh(εf ), Eh(Tf ) − Eh(εf )}.

More specifically, the maximum occurs at �εs/Tf� = 0 if Eh(εf ) <
Eh(Tf )/2, and at �εs/Tf� = Nf −1 otherwise. Recalling the def-
inition of εs and noticing that n ∈ [0, Nf −1], we have the follow-
ing result: when ε = 0, arg maxn{Rxx(n)} = −�ε/Tf� = 0;
and when ε > 0,

arg max
n

{Rxx(n)} (13)

=

{
((Nf −�ε/Tf�) mod Nf ), if Eh(εf )<Eh(Tf )/2,
Nf −�ε/Tf� − 1, otherwise.

Eq. (13) reveals that for any ε, a unique arg maxn{Rxx(n)}
can be found by peak pickingRxx(n) across n. In fact, arg maxn

{Rxx(n)} is nothing but nε, simply because by correcting t3 with
arg maxn{Rxx(n)} frames, we can acquire either NTs, or, (N +
1)Ts, with ambiguity < Tf . To illustrate this point more clearly,
we list possible values of t3 + arg maxn{Rxx(n)}Tf in Table
1. Evidently, both εf and Tf − εf are strictly less than Tf , by
definition. We have thus established that:

Proposition 1 Timing acquisition amounts to find nε, by picking
the peak of Rxx(n) in (9) across n ∈ [0, Nf − 1]. Correcting
the starting time of reception t3 with nε = arg maxn{Rxx(n)}
obtained from (13) yields the desired timing NTs, or, (N + 1)Ts,
with ambiguity < Tf .

Table 1. Possible values of t3 + arg maxn{Rxx(n)}Tf

Eh(εf ) <
Eh(Tf )

2
Eh(εf ) >

Eh(Tf )

2

ε = 0 NTs impossible

ε ∈ (0, Tf ) NTs + εf (N + 1)Ts + (εf − Tf )

ε ∈ [Tf , Ts) (N + 1)Ts + εf (N + 1)Ts + (εf − Tf )

An estimate of Rxx(n) can be obtained by computing Rxx(n; m)
over pairs of xn,m(t) each of duration Ts, and averaging their ab-
solute values across the M/2 pairs, as follows:

R̂xx(n) =
2

M

M/2−1∑
m=0

∣∣∣∣
∫ Ts

0

xn,2m(t)xn,2m+1(t)dt

∣∣∣∣ . (14)

Summarizing, our blind timing algorithm based on “dirty tem-
plates” can be carried out as follows:

Step 0. Set n = 0.
Step 1. For a given n, take M segments xn,m(t) each of dura-
tion Ts from the received signal as in (3). Integrate-and-dump the
product of adjacent segments xn,m(t) and xn,m+1(t) as in (8).
Step 2. Form an estimate of Rxx(n) by averaging over all pairs
the absolute value of the integral obtained in Step 1 [c.f. (14)]. If
n < Nf − 1, set n = n + 1, and go to Step 1. Otherwise, go to
Step 3.
Step 3. Find an estimate of nε by peak-picking R̂xx(n); i.e.,
n̂ε = arg maxn{R̂xx(n)}.
Remark: Correcting t3 with n̂εTf will give rise to an estimate of
a symbol starting time. Notice that instead of having a fixed incre-
ment 1 (frame duration) per iteration, our algorithm can be applied
also with variable non-integer increments using voltage controlled
clock (VCC) circuits. The latter then enables not only acquisition,
but also tracking, with the possibility of further reduction of syn-
chronization speed.

4. SIMULATIONS

In this section, preliminary simulation results will be presented.
We select the pulse p(t) as the second derivative of the Gaussian
function with unit energy and duration Tp ≈ 1 ns. Each symbol
contains Nf = 32 frames, each with duration Tf = 100ns, as in
[1]. The random channels are generated according to the model in
[8, 9] with (1/Λ, 1/λ, Γ, γ) = (2, 0.5, 30, 5)ns. The diminishing
tail of the power profile is truncated to make the maximum delay
spread of the multipath channel Tg = 99ns.

The timing acquisition and symbol detection performance of
our blind algorithm is tested for various M values. Without loss of
generality, we set N = 0, and generate ε randomly from a uniform
distribution over [0, Ts). We employ fast TH spreading codes of
period Nf , which is generated from a uniform distribution over
[0, Nc − 1], with Nc = 90, and Tc = 1.0ns, independently from
frame to frame. We also set c0 = cNf−1 = 0 to avoid inter-
symbol interference.

First, we test the Mean Square Error (MSE) of our timing ac-
quisition algorithm summarized in Proposition 1. The MSE is nor-
malized with respect to T 2

s , and plotted versus SNR in Figure 1,
for M = 4, 8, 16, 32, 64, 128. Also plotted is the normalized vari-
ance of the random timing offset without timing acquisition. As
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Fig. 1. Normalized timing acquisition MSE vs. SNR per pulse
with M = (4, 8, 16, 32, 64, 128).

M increases, the normalized MSE decreases monotonically. The
same trend can be observed for increasing SNR. For all M values,
the MSE curves flatten at high SNR. This is induced mainly by the
random symbol averaging for small M values, and by the frame
resolution limit for large M values. The latter can be mitigated
through tracking.

We then test the bit-error-rate (BER) performance associated
with our timing acquisition scheme, and compare it to the cases
without timing acquisition, and with perfect timing. To isolate
timing from channel estimation errors, we assume that the chan-
nel estimate is error-free. Fig. 2 depicts BER performance with
perfect timing, without timing, and with timing acquisition, for
various M values. Again, as M increases, the BER performance
improves monotonically.

We have also carried out MSE and BER comparisons with the
non-data aided and data-aided timing acquisition methods in [4]
and [5]. Simulations show significant improvement over the for-
mer, thanks to the multipath energy collection through integrate-
and-dump operations even with our “dirty template” obtained from
the “neighbor.” Our blind algorithm with M ≥ 16 results in MSE
and BER performance similar to the data-aided algorithm in [5]
using M/4 training symbols. Due to lack of space, these figures
are not included.

5. CONCLUSIONS

We developed a blind timing algorithm for UWB radios based on
integrate-and-dump operations between adjacent symbol-long seg-
ments of the received waveform. Segments of such pair serve as
“dirty templates” for each other. The resultant timing algorithm
exploits the ample multipath diversity inherent to UWB transmis-
sions, without knowledge of either information symbols, or, the
channel. Simulations and comparisons confirm considerable im-
provement in both error performance and acquisition speed, over
existing blind algorithms. Equally important is that it provides a
bandwidth efficient timing method to UWB links with or without
TH, over frequency-flat or frequency-selective multipath channels.
It is also worth mentioning that our algorithm is readily applicable
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Fig. 2. Averaged symbol detection BER vs. SNR per symbol with
M = (4, 8, 16, 32, 64, 128).

to non-UWB systems, when inter-symbol interference is absent.
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