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Abstract— The problem of uplink communications is considered where
multiple mobile terminals equipped with multiple antennas are commu-
nicating with one base station also having multiple antennas. A theory
for jointly optimizing the transmitter and receiver finite impulse re-
sponse (FIR) multiple-input multiple-output (MIMO) filters is developed.
The signals from the individual users are assumed to be uncorrelated
with each other and the additive channel noise is uncorrelated with
the original signals. The FIR MIMO channel filters are assumed to be
known for both at the mobile terminals and the base station. All the
input signals to the FIR MIMO channels are assumed to be power-
constrained. For given FIR MIMO channels with maximum allowable
average input powers, the transmitter and receiver FIR MIMO filters are
jointly optimized such that the mean square error (MSE) between the
desired and reconstructed signals is minimized. An iterative numerical
optimization algorithm is proposed. Numerical simulation results show
that the proposed method has substantially better performance than a
code division multiple access (CDMA) based system using minimum MSE
receiver filters.

I. INTRODUCTION

The problem of multi-user uplink FIR MIMO communications
is studied. The discrete-time equivalent low-pass representation of
the signals is used. K vector time-series with known second-order
statistics are transmitted from K mobile stations to one base station
over FIR MIMO channels when the transmitters and the receiver are
equipped with multiple antennas. It is assumed that the channel is
corrupted by additive signal-independent noise with zero mean and
known second-order statistics, but the probability density function of
the noise is arbitrary. Furthermore, it is assumed that the channel input
vectors have constrained average power, and that the FIR MIMO
channel filters are known at both the base station and the mobile
terminals. The assumption about knowledge of the channels at both
the transmitters and the receiver might be realistic in time division
duplex (TDD) systems, where the channel can be estimated, and then
the reciprocity of the channel is utilized.

It is assumed that K users are communicating with a base station
and that the base station is decoding all the K transmitted vector time-
series. As time index n is used in this article. Transmitter number i ∈
{0, 1, . . . , K − 1} is communicating the original vector time-series,
named xi(n), of dimension Ni × 1, and it is equipped with Qi

transmitter antennas. It is assumed that the original vector time-series
of two different users are uncorrelated. However, the zero mean vector
time-series xi(n) can be correlated with itself and it is assumed
that its second order statistics is known. Transmitter number i is
employing a causal FIR MIMO filter of order mi to transform the
original vector input time-series xi(n) to the channel input vector
time-series yi(n). The coefficients of transmitter filter number i are
denoted {Ei(k)}mi

k=0, where Ei(k) is FIR MIMO filter coefficient
number k for transmitter filter number i, and Ei(k) has dimension
Qi × Ni. The average power used by the transmitter output vector
time-series yi(n), of mobile station number i, is Pi.

It is assumed that the receiver is equipped with M antennas and
the received vector time-series is denoted r(n). FIR MIMO channel
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filter from user number i ∈ {0, 1, . . . , K − 1} to the base station is
specified by the FIR MIMO filter {Ci(k)}qi

k=0, where C i(k) is FIR
MIMO filter coefficient number k for channel filter number i, and
C i(k) has dimension M ×Qi. It is assumed that the receiver knows
exactly the value of all the FIR MIMO channel filters and transmitter
number i knows the value of FIR MIMO channel filter number i only.
The channel is corrupted with additive noise v(n), which is assumed
to have a known second order statistics. Let the average variance of
the components of v(n) be denoted σ2

v . The channel noise v(n) is
uncorrelated with all the original vector time-series xi(n).

The receiver is using K causal FIR MIMO filters in order to
reconstruct the K original vector time-series. In order to reconstruct
the vector time-series xi(n), a causal FIR MIMO filter of order li is
employed and the coefficients of receiver filter number i are denoted
{Ri(k)}li

k=0, where Ri(k) has dimension Ni×M and is FIR MIMO
filter coefficient number k for receiver filter number i.

The system considered is shown in Figure 1, which indicates the
dimensions of the vector time-series used. There are no constraints
on the values of Ni, Qi and M , except that they need to be positive
integers. It is assumed that all vector time-series in Figure 1 are jointly
wide sense stationary. For given values of K, Ni, Pi, Qi, C i, and M ,
the transmitter and receiver FIR MIMO filters are jointly optimized
with respect to minimum average block MSE between the desired
output and the actual output time-series vectors of the receiver filters,
subject to the average power constraints of the channel input vector
time-series. The transmitter and receiver FIR MIMO filters are jointly
optimized, and an iterative numerical algorithm is proposed based on
formulas for finding the optimal transmitter FIR MIMO filters for
given receiver FIR MIMO filters, and vice versa. The orders of all
FIR MIMO filters in the system are assumed to be finite and known.

Previous literature related to the treated problem includes [1],
which treats the single-user problem with zero order matrices ev-
erywhere using minimum MSE as the optimization criterion. In [2],
the single-user problem having a scalar channel, with an equivalent
vector channel of order 1 and no interblock interference, is treated
for memoryless transforms. The single-user FIR case is studied in [3]
and [4], where minimum MSE and minimum bit error rate (BER)
are used as optimization criteria, respectively. The problem of multi-
user downlink MIMO communications is studied in [5], using energy
efficiency as the system performance criterion in the a priori designed
receivers and a zero forcing (ZF) based criterion is used in the
a posteriori designed transmitter. A system that can be used in
uplink multi-user communications is a CDMA system employing
Gold codes [6] in the transmitters and employing minimum MSE
receiver filters with one antenna per mobile terminal and base station.

The rest of this article is organized as follows: Special notation is
introduced in Section II, and the problem is formulated in Section III.
In Section IV, the proposed iterative numerical optimization solution
is given. Section V contains results using the proposed solution,
and comparisons are made with a CDMA based system employing
Gold codes and minimum MSE receiver filters. In Section VI, some
conclusions are drawn.
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Fig. 1. System diagram of the uplink multi-user communications problem model where K mobile terminals communicate with one base station. The dashed
box on the right side indicates the base station, and the dashed boxes to the left show the K mobile stations.

II. SPECIAL NOTATION
A. FIR MIMO Filter Expansion Operators

Three expansion operators for FIR MIMO filters will be required
in this presentation, which are introduced next. Let {A(i)}k

i=0 be an
FIR MIMO filter of order k and dimension M0 × M1. As a short
form of the filter {A(i)}k

i=0 only the short notation A will be used.
Matrix A(i) is the ith coefficient of the FIR MIMO filter and it
has dimension M0 × M1. The row-expanded matrix A of the FIR
MIMO filter A is an M0 × (k + 1)M1 matrix given by:

A = [A(0) A(1) · · · A(k)]. (1)

The column-expanded matrix A of the FIR MIMO filter A is a
(k + 1)M0 × M1 matrix defined as

A =
[
AT (k) AT (k − 1) · · · AT (1) AT (0)

]T

, (2)

where the operator (·)T represents matrix transposition. Let q be
a non-negative integer. The row-diagonal-expanded matrix A

(q) of
order q of the FIR MIMO filter A is a (q + 1)M0 × (k + q + 1)M1

block Toeplitz matrix given by:

A(q) =

⎡
⎢⎣

A(0) · · · A(k) · · · 0
...

. . .
. . .

. . .
...

0 A(0) · · · · · · A(k)

⎤
⎥⎦ . (3)

B. Vector Time-Series Expansion
Let ν be a non-negative integer. The column-expansion of order ν

of the vector time-series xi(n) has dimension (ν + 1)Ni × 1 and is
defined as:

xi(n)(ν) =
[
xT

i (n) xT
i (n − 1) · · · xT

i (n − ν)
]T

. (4)

The column-expansions of other vector time-series are defined in
the same manner as shown in Equation (4). The column-expansion
operator of vector time-series, while related to the column-expansion
operator for FIR MIMO filters, has dimension which depends on
the situation it is used. In each case, the correct dimension is given
indirectly by the notation. The dimension of the column-expansion
of an FIR MIMO filter is given by the dimension and order of the
FIR MIMO filter.
C. Rearranging Operator

Let k be a non-negative integer. A rearranging operator denoted
by T (k)

mi : C
Ni×(mi+k+1)Ni → C

(k+1)Ni×(mi+1)Ni produces a (k+
1)Ni×(mi+1)Ni block Toeplitz matrix from an Ni×(mi+k+1)Ni

matrix. Let W be an Ni × (mi + k + 1)Ni matrix, where the pth
Ni ×Ni block is given by w(p), p ∈ {0, 1, . . . , mi + k}. Then, the
operator T (k)

mi acting on the matrix W yields:

T (k)
mi

{W } =

⎡
⎢⎢⎢⎣

w(k) w(k + 1) · · · w(mi + k)
...

...
. . .

...
w(1) w(2) · · · w(mi + 1)
w(0) w(1) · · · w(mi)

⎤
⎥⎥⎥⎦ . (5)

III. PROBLEM FORMULATION
In this section, the quantities involved in formulating the problem

are defined, and in the end of this section the treated problem is stated
mathematically. The objective function to be minimized is the average
block MSE, and it is minimized with respect to the FIR MIMO
transmitter and receiver filter coefficients subject to the constraint
on the average power used by the input vector time-series to the
channels.

The autocorrelation matrix of dimension (ν + 1)Ni × (ν + 1)Ni

of the (ν + 1)Ni × 1 vector xi(n)(ν) is defined as

Φ(ν,Ni)
xi

= E

[
xi(n)(ν)

(
xi(n)(ν)

)H
]

, (6)

where the operator (·)H denotes complex conjugate transposed.
For other column-expanded vectors, the autocorrelation matrices are
defined in a similar way.

Let the (mi +1)Ni × (mi +1)Ni matrix Ψ
(mi,Ni)
xi (k) be defined

as

Ψ (mi,Ni)
xi

(k) = E

[(
xi(n)(mi)

)∗ (
xi(n + k)(mi)

)T
]

, (7)

where k is an integer, and the operator (·)∗ means complex conju-
gation of the components. From Equations (6) and (7) it is seen that
the following relationship is valid:

Ψ (mi,Ni)
xi

(0) =
(
Φ(mi,Ni)

xi

)∗
=

(
Φ(mi,Ni)

xi

)T

. (8)

The desired output vector time-series di(n) of receiver filter
number i is given by di(n) = xi(n−δi), where δi ∈ {0, 1, . . . , mi+
qi + li} is the vector delay experienced by the input signal xi(n)
of transmitter number i. The delay δi should be chosen carefully,
depending on the corresponding FIR MIMO channel filter Ci and
the orders of the corresponding transmitter and receiver filters. The
cross-covariance matrix φ

(ν,Ni)
xi,di

of dimension (ν + 1)Ni × Ni is
defined as:

φ
(ν,Ni)
xi,di

= E
[
xi(n)(ν)dH

i (n)
]
. (9)

The output of the transmitter FIR MIMO filter number p in Figure 1
is represented by the Qp × 1 vector yp(n) given by

yp(n) =

mp∑
k=0

Ep(k)xp(n − k) = Ep xp(n)(mp), (10)
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where the notation introduced in Section II is used.
Let the convolution between receiver filter Ri and channel filter

Cp be denoted by H(i,p). The FIR MIMO filter H (i,p) has or-
der qp + li and dimension Ni × Qp. The row-expansion of H(i,p)

can be expressed as H(i,p) = Ri Cp
(li), which is an Ni ×

(qp + li + 1)Qp matrix. Let the convolution between channel filter
Ck and transmitter filter Ek be denoted by T k, and this filter
has order mk + qk and dimension M × Nk . The FIR MIMO
filter from the original signal xi(n) to the output signal x̂k(n)
is denoted by W (k,i), and W (k,i) has order mi + qi + lk and
dimension Ni × Ni. From the notation introduced in Section II, it
can be verified that W (k,i) = Rk C i

(lk)
Ei

(qi+lk), which has
dimension Nk × (mi + qi + lk + 1)Ni. The matrix C i

(lk) has
dimension (lk + 1)M × (qi + lk + 1)Qi and the matrix Ei

(qi+lk)

has dimension (qi + lk +1)Qi × (mi + qi + lk +1)Ni. By rewriting
the convolution sum with the notation introduced in Section II, it is
possible to express the output vector x̂k(n) of receiver filter number k
as

x̂k(n) =

K−1∑
i=0

W (k,i) xi(n)(mi+qi+lk) + Rk v(n)(l), (11)

where the dimensions of the vectors and the matrices follow from
Section II.

The average block MSE, denoted E , is defined by:

E =
1

K

K−1∑
i=0

E
[
‖x̂i(n) − di(n)‖2

]
. (12)

It can be shown that the block MSE E in Equation (12) can be
expressed as

E =
1

K

K−1∑
k=0

Tr
{

Rk Φ(lk,M)
v Rk

H+

(
W (k,k) −W

(ZF)
(k,k)

)
Φ(mk+qk+lk,Nk)

xk

(
W (k,k) −W

(ZF)
(k,k)

)H

+
K−1∑
i=0
i�=k

W (k,i) Φ(mi+qi+lk,Ni)
xi

W (k,i)
H

⎫⎪⎬
⎪⎭ , (13)

where the ZF matrix W
(ZF)
(k,k)

is defined as W
(ZF)
(k,k)

=[
0Nk×δkNk

INk 0Nk×(mk+qk+lk−δk)Nk

]
. Here, the matrix INK

is the identity matrix of dimension Nk × Nk , and W
(ZF)
(k,k)

has
dimension Nk×(mk +qk + lk +1)Nk . The first term inside the trace
operator in Equation (13), represents the undesired additive channel
noise at the output of receiver filter number k, the second term is the
signal MSE for user number k, and the third term is the unwanted
signals from other users at the output of receiver filter number k.

The average power constraint for transmitter number i is a con-
straint on the the channel input vector time-series yi(n) and it can
be expressed

E
[
‖yi(n)‖2] = Tr

{
Ei Φ(mi,Ni)

xi
Ei

H
}

= Pi, (14)

where Pi is the power used by mobile station number i. Equation (14)
follows from Equation (10).

From Equations (13) and (14), the constrained optimization prob-
lem to be solved can be stated as follows:

Problem 1:

min
{E0,...,EK−1,R0,...,RK−1}

E ,

subject to (15)

E
[
‖yi(n)‖2] = Pi ∀ i ∈ {0, 1, . . . , K − 1}.

IV. PROPOSED SOLUTION
Problem 1 can be converted into an unconstrained optimization

problem by the use of Lagrange multipliers. The unconstrained
objective function ζ can be expressed as

ζ = E +
1

K

K−1∑
i=0

µi Tr
{

Ei Φ(mi,Ni)
xi

Ei
H

}
, (16)

where µi is the positive Lagrange multiplier corresponding to the
power constraint of transmitter number i. The Lagrangian multipli-
ers µi will later be eliminated in the fixed point iteration proposed
for the transmitter optimization. Necessary conditions for optimality
are found through matrix differentiation of the positive unconstrained
objective function ζ with respect to the conjugate of the complex
unknown matrices.

It can be shown, that for given FIR MIMO receiver filters, the
optimal transmitter FIR MIMO filter number p is obtained from

(Ap + µpF p) · vec(Ep ) = bp, (17)

where the operator vec(·) stacks the columns of the matrix into a
long column vector [7], and where matrix A is an (mp +1)NpQp ×
(mp + 1)NpQp matrix given by

Ap=
K−1∑
i=0

qp+li∑
k0=0

qp+li∑
k1=0

Ψ
(mp,Np)
xp (k0 − k1) ⊗

(
HH

(i,p)(k0)H (i,p)(k1)
)
,

(18)
where the operator ⊗ is the Kronecker product [7], the matrix Fp

is an (mp + 1)NpQp × (mp + 1)NpQp matrix given by F p =

Ψ
(mp,Np)
xp (0) ⊗ IQp , and the vector bp has dimension (mp +

1)QpNp × 1 and is given by:

bp =vec

((
H (p,p)

)HT (qp+lp)
mp

{(
φ(mp+qp+lp,Np)

xp

)H
})

. (19)

From Equations (7) and (18), it is seen that AH = A and that the
matrix A is positive semidefinite.

If the average power Pp is specified, the Lagrange multiplier µp

can be eliminated. It can be shown from Equations (14) and (17)
that the following fixed point iteration can be used to find transmitter
number p:

vec (Ep ) =

[
Ap +

vecH (Ep ) (bp − Ap vec (Ep ))

Pp
F p

]−1

bp.

(20)
When using Equation (20) in a fixed point iteration, the Lagrange
multiplier µp is eliminated.

It can be shown that the optimized FIR MIMO receiver filter
number p for given FIR MIMO transmitter filters is found by the
following equation

Rp =
(
φ(mp+qp+lp,δp,Np)

xp

)H (
T p

(lp)
)H

·
[
Φ

(lp,M)
v +

K−1∑
k=0

T k
(lp)

Φ
(mk+qk+lp,Nk)
xk

(
T k

(lp)
)H

]−1

, (21)

where the dimension of the matrix T k
(lp)

is (lp + 1)M × (mk +
qk + lp + 1)Nk . This result can also be derived by means of the
orthogonality principle [8], [9]. These filters are called FIR MIMO
Wiener filters.

The problem of jointly optimizing the overall system performance
is performed by the following iterative approach: For fixed transmitter
FIR MIMO filters, the receiver FIR MIMO filters are optimized by
solving Equation (21), then the transmitter FIR MIMO filters are op-
timized by using the previously optimized value of the receiver filter
in Equation (20), and this procedure is repeated until convergence is
reached. The algorithm is guaranteed to converge at least to a local
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TABLE I
CHANNEL COEFFICIENTS Ck(i) FOR THE K = 3 SCALAR CHANNELS

USED IN SECTION V. THE ORDER OF THE CHANNELS WAS L = 5.

i C0(i) C1(i) C2(i)
0 0.824 + 0.042j 0.881 − 0.898j −0.040 + 0.265j
1 0.443 + 1.271j −0.452 + 0.696j 0.363 + 0.796j
2 0.053 + 0.187j 0.408 − 0.032j 0.281 + 0.515j
3 0.249 + 0.616j −0.255 − 0.565j 0.535 − 1.681j
4 −0.492 − 1.023j −0.096 − 0.541j 0.283 − 0.194j
5 1.199 − 0.496j −0.954 + 0.609j −0.949 − 0.228j

minimum since at each step the objective function is decreased and
the objective function is lower bounded by zero.

If K = 1 the derived equations for the optimal transmitter and
receiver filter reduce to the equations proposed in [3], which treats
the corresponding single user MIMO communications problem.

For the case where some of the filter coefficients of the FIR MIMO
filters Ri and Ei are equal to zero, a optimization procedure similar
to the one presented in [10], can be used.

V. RESULTS AND COMPARISONS

A comparison is made against a system employing CDMA with
spreading codes of length M = 31 in all the single-antenna mobile
stations. Normalized Gold codes [6] are used as spreading codes.
K = 3 users are assumed. In order for the studied model to agree
with the single antenna CDMA model, mi = 0, Ni = 1 and
Qi = M for i ∈ {0, 1, 2}. The CDMA system employs minimum
MSE receiver filters, i.e., Wiener filters, see Equation (21). The order
of all the scalar causal FIR channel impulse responses is L = 5,
and they are taken as samples from a white complex circularly
symmetric Gaussian process with variance 1. The scalar channel
coefficients Ck(i) are shown in Table I, where j =

√
−1. Since

L ≤ M , it is shown in [2] that the equivalent FIR MIMO channel
filter C i of dimension M ×M has order qi = 1, and the two terms
of the FIR MIMO channel filter {Ci(k)}qi=1

k=0 can be found from
Equation (19) in [2]. The order of the receiver filters is li = 2 for all
receiver filters in both the CDMA system and the proposed system.
The delays through the system are chosen as δi = 1 for both systems.
The additive channel noise is assumed to be white complex Gaussian
with variance σ2

v .
Assume that BPSK signals {−1, +1} are transmitted, and as-

sume that the original BPSK signals are uncorrelated with equally
likely symbols. Let the average energy per bit be denoted Eb =
1
K

∑K−1
i=0 E

[
yH

i (n)yi(n)
]
. Using the theory developed in [4], it is

possible to develop an exact theoretical expression for the BER for
the system described in this section. When finding the the BER versus
channel quality, measured in Eb/σ2

v , performance of the two systems,
these theoretical expressions are used to find the performances. These
performances are verified by Monte Carlo simulations for relatively
high values of BER, since the Monte Carlo estimates depend on
the number of bits used in the simulations. Figure 2 compares the
theoretical BER versus Eb/σ2

v performances of the CDMA based
system that uses minimum MSE receiver filters and Gold codes
in the transmitters and the proposed system. From Figure 2, it is
seen that for example for BER = 10−10, about 5.5 dB can be
gained by the proposed system over the CDMA based system. The
proposed system and the CDMA based system have the same number
of filter coefficients in all the filters. The receiver filters, in both
systems, have the same complexity. The transmitter filters in the
CDMA based system are easier to implement since the transmitter
filter coefficients just have two real values, and the proposed system,
in general, has M different complex coefficients in each transmitter
filter for the parameter values chosen in this section. The proposed
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Fig. 2. BER versus Eb/σ2
v performance of the CDMA system using

minimum MSE receivers and Gold spreading codes (· · · ◦ · · · ) and the
proposed system (−×−).

system is more complicated to optimize than the CDMA system.
However, the significant gain of the proposed system might justified
the increase in implementation and design complexity. This depends
on the application.

VI. CONCLUSIONS
Equations were derived for finding jointly optimized transmitter

and receiver FIR MIMO filters for multi-user uplink communications
over power-constrained vector channels. Based on these equations an
iterative solution was proposed which is able to converge to a locally
optimal solution. The receiver filters are FIR MIMO Wiener filters. A
numerical example was given showing the potential of the proposed
method compared to a CDMA based method using Gold codes and
Wiener receiver filters. It was shown that the proposed method had
significantly better BER versus channel quality performance than the
CDMA based method. The reason for the improvement is that the
proposed system jointly optimizes the transmitter and receiver FIR
MIMO filters.
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