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Abstract— An iterative joint FIR precoder-equalizer optimization al-
gorithm for MIMO ISI channel is proposed. This algorithm provides a
suboptimal solution of the FIR zero-forcing precoder (ZFP) and equalizer
(ZFE) for the Space-Time Modulated Code (STMC) system. Although
serval joint precoder-equalizer design methods for MIMO ISI were
proposed, existing design methods require a long guard period, which is
larger than or equal to the channel order, to be inserted in the transmitted
signal for avoiding the inter-block interference (IBI). This reduces the
spectral efficiency of those systems. In this paper, we adopted the STMC
structure, which does not require a long guard period. Using the FIR
LS ZFE designing techniques previously proposed by us, we proposed a
FIR LS ZFP design method. By combining the proposed ZFP design
method with the ZFE design method, we propose an iterative joint
FIR precoder-equalizer optimization algorithm. Although the iterative
algorithm can only provide the suboptimal precoder-equalizer design,
simulation results showed that substantial performance gain can be
obtained when comparing with those cases without the joint precoder-
equalizer design.

I. INTRODUCTION

Block based high speed communication can be obtained using
the spatial diversity provided by the multiple transmit and receive
antennas [5], and reducing the redundancy introduced in the trans-
mitted signals for error correction purpose. Examples of such systems
include V-BLAST [6], [7] and space-time codes [8], [9]. However,
those systems only support flat fading channel communications.
If selective fading channel is considered, the system will need to
eliminate both the inter-symbol interference (ISI) and the inter-block
interference (IBI). Inserting a guard period of length ρ in between
each block of K transmitted signal is a common method to avoid
IBI [10], [11]. However, ρ has to be at least as long as the channel
length to achieve IBI free communication. This results in a reduction
in the spectral efficiency by a factor of K/(K + ρ), which will
be very severe with the increase in channel bandwidth. Although
increasing K will reduce the loss, it also increase the system delay
and complexity.

Recently, a promising system, Space-Time Modulated Codes
(STMC), is proposed by Xia [1]. STMC is a special type of the
space time block codes for selective fading MIMO channel. Systems
using STMC can release the requirement of guard period duration.
Hence, it avoided the degradation of system throughput suffered by
most of the block base transmission system. The STMC based system
is basically constructed by a pair of precoder and equalizer. Different
equalizer design methods for a given precoder were proposed [1], [3].
However, since the precoder was predefined, it can not be optimized
towards the channel property. Several joint precoder-equalizer design
methods for MIMO or SISO channel were proposed [11]–[15], but
none of them allow the guard period to be shorter than the channel
order. This means that they cannot take the advantage of minimal
transmit redundancy provided by STMC.

In this paper, we propose a joint precoder-equalizer design method
for MIMO ISI channel based on the STMC precoder structure. This
means that our design method will not require the grand period to
be great than or equal to the channel order. We will make use of the
iterative optimization idea used in [15] as a framework. The method
in [15] derived a pair of equations that describe the optimal equalizer
with a given precoder, as well as the optimal precoder with a given
equalizer. With an initial precoder equalizer pair, these two equations
are used alternatively to jointly optimize both of the precoder and
equalizer. However, the algorithm proposed in [15] can only be used
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for fading channel environment. In order to transform this idea to
support the selective fading environment with STMC, we will apply
the FIR least square (LS) zero-forcing equalizer (ZFE) designing
method proposed in [3] to design the LS optimal equalizer with a
given STMC precoders. By modifying this equalizer design method,
we then proposed a FIR LS zero-forcing precoder (ZFP) design
method with a given equalizer in Section IV. By combining the FIR
LS ZFE and ZFP design methods with the iterative optimization idea
in [15], the iterative joint precoder-equalizer algorithm is proposed
in Section VI. The sufficient conditions for the iterative method
are also derived. Although this iterative joint optimization algorithm
only provides suboptimal result, the simulation results in Section VII
shows that substantial performance improvement can be obtained
when compared to systems without using the joint optimization
algorithm.

II. CHANNEL MODEL

Consider a MIMO communication system with N transmit and
M receive antennas. Let x̃n(z) be the transmitted signal at the
nth transmit antenna, ỹm(z) be the received signal in the mth
receive antenna, ηm(z) be the AWGN noise received at the mth
receive antenna, and hm,n(k) be the length L impulse response
of the ISI channel corresponding to the nth transmit antenna and
the mth receive antenna. The MIMO communication system can be
represented by,

ỹ(z) = H(z)x̃(z) + η̃(z), (1)

where

ỹ(z)
�
= [ỹ1(z), . . . , ỹM (z)]T , (2)

x̃(z)
�
= [x̃1(z), . . . , x̃N (z)]T , (3)

η̃(z)
�
= [η̃1(z), . . . , η̃M (z)]T , (4)

H(z)
�
=

⎡
⎣ h1,1(z) · · · h1,N (z)

.

.

.
. . .

.

.

.
hM,1(z) · · · hM,N (z)

⎤
⎦. (5)

Here (·)T denotes the matrix transpose.

III. STMC CODED SYSTEM

The STMC proposed in [1] enhances the system performance by
adding a linear precoding block G(z) and equalization block F(z)
in the transmitter and receiver respectively. The input source signal,
x(z), is a length K complex valued column vector, which can be the
signal after binary to complex mapping, or the encoded signal of an
outer code. The signal is precoded using the linear STMC precoder
G(z). G(z) is a NP ×K polynomial matrix with STMC block size
P . The NP outputs of the precoder G(z) represent the P polyphase
components of the signals in each transmit antenna. These signal will
go through a P-to-1 parallel to serial block and then launched to the
MIMO channel. Hence, G(z) is precoding block with rate K/(NP ).
When NP > K, the precoder induces redundancy to the transmitted
signal that is exploited in the receiver to compensate for the spectral
nulling effect of the ISI channel.

The signal received by the M receiver antennas is converted by
a 1-to-P serial-to-parallel converter. The length NP output vector is
processed by a linear equalizer F(z). The linear equalizer makes use
of the redundant information induced by the precoder to recover the
source signal. Readers should refer to [1], [2] for further details.

The design of the LS optimal FIR ZFE with a given channel and
STMC precoder was proposed in [3]. However, there does not existing
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an algorithm that jointly optimized both the STMC ZFE and ZFP.
By modifying the ZFE design method proposed in [3], an optimal
FIR ZFP algorithm with a given equalizer is constructed. After that,
an iterative joint optimization method for the suboptimal solution of
joint ZF precoder-equalizer is proposed.

A. Formulation of FIR ZF Precoder-Equalizer

The STMC precoder-equalizer system can be formulated us-
ing polyphase representation. Let Hp(z) and ηp(z) be the pth
polyphase component of H(z) and η̃(z) in eq.(1), such that H(z) =∑P−1

p=0 Hp(zP )z−p and η̃(z) =
∑P−1

p=0 ηp(zP )z−p. The equalized
output, y(z), can be written as,

y(z) = F(z)[H(z)G(z)x(z) + η(z)], (6)

where H(z) is the blocked version of H(z) that has a pseudo-
circulant form

H(z) =

⎡
⎢⎢⎢⎢⎢⎣

H0(z) z−1HP−1(z) · · · z−1H1(z)
H1(z) H0(z) · · · z−1H2(z)

.

.

.
.
.
. · · ·

.

.

.

HP−2(z) HP−3(z)
. . . z−1HP−1(z)

HP−1(z) HP−2(z) · · · H0(z)

⎤
⎥⎥⎥⎥⎥⎦, (7)

y(z)
�
= [y0(z) y1(z) · · · yK−1(z)]T , (8)

x(z)
�
= [x0(z) x1(z) · · · xK−1(z)]T , (9)

η(z)
�
= [ηT

0 (z) ηT
1 (z) · · · ηT

P−1(z)]T . (10)

The STMC code rate is K/(NP ). Since M , N and P are fixed,
the code rate is maximized when the source signal block size K is
maximized. Denotes Kmax as the maximal K that can achieve ZF
precoding and equalization. [3] showed that

Kmax = min(NP, MP ) − ρH, (11)

where ρH is the number of nonunity terms in the diagonal of the
Smith form of H(z). The FIR ZF precoder-equalizer system achieve
minimal transmit redundancy when K = Kmax. Interested reader
please refers to [3] for the proof.

IV. FIR ZFP DESIGN

Denotes the virtual channel F(z) as the combined F(z) and H(z)

in eq.(6), F(z)
�
= F(z)H(z). ISI-free communication is achieved

when y(z) in eq.(6) equals to the scaled delayed input signal x(z),
i.e., yk(z) = ckz−rkxk(z) with non-zero constants ck and integers
rk for all k = 0, 1, . . . , K − 1. Therefore, ISI-free communication
is achieved when

F(z)G(z) = diag(c0z
−r0 , c1z

−r1 , . . . , cK−1z
−rK−1). (12)

Without lost of generality, we assume ck = 1 and rk ≥ 0
for k = 0, 1, . . . , K − 1, in the following discussion. Let γ =
{r0, r1, . . . , rK−1} be the set of delay of the sub-channels. As a
result, the ZFP is given by G(z) = F†(z)Dγ(z), where Dγ(z) =
diag(z−r0 , z−r1 , . . . , z−rK−1), and (·)† denotes the matrix pseudo-
inverse.
A. Minimal Order Requirement for FIR ZFP

The ZFP G(z) equals to the pseudo-inverse of the polynomial
matrix F(z). As a result, the solution of G(z) may not be unique.
One of the free parameter in designing G(z) is the order of the
polynomial matrix. Let LD , LF and LG be the order of D(z), F(z)

and G(z), such that Dγ(z)
�
=

∑LD
�=0 D�z

−�, Fγ(z)
�
=

∑LF
�=0 F�z

−�,

and Gγ(z)
�
=

∑LG
�=0 G�z

−�. The polynomial matrix multiplication
in eq.(12) can be rewritten in terms of a multiplication of a set of
scalar block matrices,

D̃γ = F̃G̃, (13)

where,

D̃γ
�
=

[
DT

LD
DT

LD−1 · · · DT
0

]T
, (14)

G̃
�
=

[
GT

LG
GT

LG−1 · · · GT
0

]T
, (15)

F̃ �
=

⎡
⎢⎣

FT
LF · · · FT

0 · · · 0

.

.

.
. . .

. . .
. . .

.

.

.
0 · · · FT

LF · · · FT
0

⎤
⎥⎦

T

. (16)

The ZF condition in eq.(12) can be represented using eq.(13) with,

[D̃γ ]{i,j} =

{
1 , for i = (LD − rj − 1)K + j + 1,
0 , otherwise,

(17)

for all j = 0, 1, . . . , K − 1, where [D̃γ ]{i,j} denotes the element in
the ith row and jth column of D̃γ . This formulated a scalar matrix
representation of the polynomial matrix equation in eq.(12).

Observed from eq.(13), the existence of ZFP required the set of
system delay γ to be chosen with

[F̃ ]{[(LD−rj−1)K+j+1]-th row} �= 0, for j = 0, 1, . . . , K−1. (18)

Assume the set of system delays is chosen appropriately, the ZFP
G(z) can be obtained from G̃ in eq.(13).

G̃ = F̃†D̃. (19)

Assume F̃ has ξ non-zero columns, and the non-zero rows are
indexed by �1, �2, . . . , �ξ, with 1 ≤ �1 < �2 < · · · < �ξ ≤
K(LF + LG + 1). Form a matrix F̂ with the non-zero rows of
F̃ ,

F̂ �
= [F̃ ]{(�1,�2,...,�ξ)-th rows} = TF̃ , (20)

with [T]{i,j} =

{
1 , for j = �i and i = 1, 2, . . . , ξ ,
0 , otherwise.

To simplify our discussion, we assumed F̂ has full rank. Because,
the coefficients of the channel transfer function, H(z) is randomly
distributed in real world applications, therefore, the matrix F̂ is
almost sure to have full rank. The pseudo-inverse of F̃ can be
obtained by

F̃† = F̂†T. (21)

The FIR ZFP G(z) exists if the right pseudo-inverse of F̂ exists.
Since F̂ has full rank, the existence condition of F̂† is equivalent to

Number of column of F̂ ≥ Number of row of F̂ ,

⇔ NP (LG + 1) ≥ ξ,

⇔ LG ≥ ξ

NP
− 1. (22)

Hence, the minimal possible order of G(z), LGmin , is given by
eq.(22) as

LGmin = �ξ/(NP )� − 1, (23)

where �·� denotes the ceiling. In most case, F̃ will not have all zero
rows. As a result, F̃ = F̂ and ξ equals to the total number of rows
in F̃ , i.e. ξ = K(LF + LG + 1). Hence eq.(23) can be simplified to

LGmin =

⌈
KLF

NP − K

⌉
− 1. (24)

B. Parameterization of FIR ZFP

Assume that those conditions in the previous section are satisfied.
In this section, we consider the design of ZFP. Let Gγ(z) be a
solution of ZFP with a given set of system delays γ which satisfies
the condition in eq.(18), and G̃γ be the corresponding scalar matrix
representation of Gγ(z). The solution of G̃γ can be obtained by
eq.(19) and eq.(20). Notice that if LG ≤ LGmin , F̂ may not be
a square matrix. This implies that there may be infinitely many
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solution of G̃γ (and so as Gγ(z)). If G̃γ can be parameterized,
the parameterization will help to analysis the FIR ZFP solution and
construct the optimal solution.

Using singular value decomposition (SVD), F̂ can be rewritten
as F̂ = UΣVH , where U and V are unitary matrices with (·)H

denotes the conjugate transpose, and Σ is a ξ×NP (LG +1) matrix,
with

[Σ]{i,j}
�
=

{
σi , for i = j = 1, 2, . . . , ξ ,
0 , otherwise. (25)

where σi, for i = 1, 2, . . . , ξ, is the singular value of F̂ . Define

µ
�
= NP (LG + 1) − ξ. The inverse of F̂γ can be parameterized by

an arbitrary matrix Â ∈ Rµ×ξ,

F̂† = [F̂‡ V]

[
Iξ

Â

]
, (26)

where V �
= [V]{µ+1,µ+2,...,µ+ξ columns}, and F̂‡ is the Moore-

Penrose pseudo-inverse of F̂ ,

F̂‡ �
= VΣ‡UH , with [Σ‡]{i,j}

�
=

{
σ−1

i , for i = j = 1, . . . , ξ ,
0 , otherwise.

(27)
The parameterized solution of G̃ is obtained by substituting eq.(26)

into eq.(19) and (21), such that

G̃γ = [F̂‡ V]

[
TD̃γ

A

]
, (28)

where A
�
= ÂTD̃γ is a free matrix that parameterize G̃γ , which

indirectly parameterizes Gγ(z).

C. LS Optimal Solution of ZFP

With the parameterization of matrix G̃γ in eq.(28), we can obtain
the LS optimized G̃γ by adjusting the free parameter A. The
equalized signal vector y(z) in eq.(6) with a given ZFP is,

y(z) = x(z) + F(z)η(z). (29)

Since the ZFE F(z) is given in designing the ZFP G(z), the
signal-to-noise ratio (SNR) of the equalized signal y(z) will not be
alternated by choosing a different G(z) from the solution set given
by eq.(28). However, different ZFP given by eq.(28) will provide
different transmission power requirement. As a result, the G(z)
which requires the minimal transmission will provide the LS optimal
performance under the total transmit power constraint.

Definition 1 (Frobenius Norm of Polynomial Matrix): The
Frobenius norm of any polynomial matrix X(z)

�
=

∑
n Xnz−n is

defined as ‖X(z)‖F
�
=

√∑
i trace(XT

i Xi).

With eq.(29), the power gain of the transmitted signal is propor-
tional to ||G(z)||2F . Hence, we can obtain an optimal precoding by
choosing a Gγ(z) from eq.(28) which has minimal ||G(z)||F . Since
G̃γ is formed by the coefficient of Gγ(z), eq.(16) and the Frobenius
norm of polynomial matrix provides the following relationship,

||G̃γ ||F = ||Gγ(z)||F . (30)

Eq.(30) simplifies the optimization because G̃γ is just a scalar matrix.
The optimal precoder can be obtained by finding an optimal matrix
A in eq.(28) that minimizes ‖G̃γ‖F . By eq.(28), ‖G̃γ‖2

F can be
written as,

‖G̃γ‖2
F = ‖F̂‡TD̃γ‖2

F + ‖VA‖2
F . (31)

Hence, ‖G̃γ‖F is minimized when ‖VA‖F = 0. Since the columns
of V are orthogonal, having ‖VA‖F = 0 implies A = 0. As a result,
the scalar matrix representation of LS optimal ZFP with the set of
system delays γ (denoted as G̃γ,opt) can be obtained by,

G̃γ,opt = F̂‡TD̃γ . (32)

Set G0(z) = Ginit(z) and n = 0.
Do

Design LS optimal Fn(z) using H(z) and Gn(z)

Normalize Fn(z), i.e. Fn(z) = Fn(z)
||Fn(z)||F

Design LS optimal Gn+1(z) using H(z) and Fn(z)
n = n + 1

Until 1 − ||Gn(z)||F
||Gn−1(z)||F < α

Fig. 1. Iterative Joint ZFP and ZFE Optimization Algorithm.

Denotes the set of optimal system delay as γopt =
{r1,opt, r2,opt, . . . , rK,opt}, which is obtained by selecting ri,opt as

ri,opt =

{
r :

arg min
r

(∥∥∥[F̂‡T]{(rK+i)-th column}
∥∥∥

F

)
,

[T]{(rK+i)-th column} is not all zero valued.

}
, (33)

for i = 1, 2, . . . , K .

V. FIR ZFE DESIGN

By taking the transpose in the derivation of ZFP, the parameteriza-
tion of LS optimal solution for ZFE can be obtained. The method for
designing ZFE was proposed in [3]. For the sake of easy reference,
we quoted the key results in [3] below. Considers

G(z)
�
= H(z)G(z). (34)

For any particular set of system delay γ, FIR ZFE Fγ(z) exists if

Fγ(z)G(z) = Dγ(z). (35)

Define Fγ(z)
�
=

∑LF
�=0 F�z

−� and Gγ(z)
�
=

∑LG
�=0 G�z

−�. Express
eq.(34) using the scalar matrix representation,

Ẽγ = F̃G̃, (36)

Ẽγ
�
=

[
DLD DLD−1 · · · D0

]
, (37)

F̃
�
=

[
FLF FLF −1 · · · F0

]
, (38)

G̃ �
=

⎡
⎣ GLG · · · G0 · · · 0

.

.

.
. . .

. . .
. . .

.

.

.
0 · · · GLG · · · G0

⎤
⎦. (39)

Let ρ1, ρ2, . . . , ρζ be the index of the non-zero column of G̃. Define,

Ĝ �
= G̃T, with [T]{i,j} =

{
1 , for i = ρj and j = 1, 2, . . . , ζ ,
0 , otherwise. (40)

The LS optimal solution of FIR ZFE can be obtained by

F̃r,opt = ẼγTĜ‡. (41)

Let the required minimal order of F(z) for zero-forcing be LFmin .
Then,

LFmin = �ζ/(MP )� − 1. (42)

If G̃ does not has all zeros column, such that ζ = K(LG + LF +1),
then eq.(42) can be written as,

LFmin =

⌈
KLG

MP − K

⌉
− 1. (43)

VI. ITERATIVE JOINT OPTIMIZATION ALGORITHM

A. Algorithm

Section IV and V have shown the methods for designing the LS
optimal FIR ZFP and ZFE with a given precoder or the equalizer
respectively. By combining these two algorithms, we can jointly op-
timize the precoder and equalizer of a zero-forcing system iteratively
as shown in Fig.1. Once an initial precoder or equalizer is given,
the iterative algorithm will alternatively design the FIR LS optimal
ZFP and ZFE under the filter order constraints of precoder and
equalizer. Since the ZFP and ZFE design algorithm in the iteration can
provide the LS optimal result, the system performance is guaranteed
to be improving during the iteration process until the optimal system
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TABLE I
ITERATIVE JOINT OPTIMIZATION SUFFICIENT CONDITIONS.

K LH Required LF and LG

< NMP
M+N Any

LG ≥ K(LH+LF )
NP−K − 1 ≥ (LH−1)KM

NMP−K(N+M) − 1,

LF ≥ K(LH+LG)
MP−K − 1 ≥ (LH−1)KN

NMP−K(N+M) − 1.

= NMP
M+N

= 0 M ≤ MLF − NLG ≤ N

= 1 MLF − NLG = N − M

> NMP
M+N = 0

KLF
NP−K − 1 ≤ LG ≤ KM

K(N+M)−NMP
− 1,

KLG
MP−K − 1 ≤ LF ≤ KN

K(N+M)−NMP
− 1.

is obtained. Noted that, the iterative algorithm will compare the
percentage improvement of the gain of G(z) designed in each loop.
If the percentage improvement is less than a given threshold value,
α, the iteration will stop.

B. Sufficient Conditions

The proposed iterative design must satisfy the order requirements
of the ZFP and ZFE designs. As discussed, under random channel
transfer function environment, F̃ and G̃ can be assumed not to contain
all zero rows and all zeros columns respectively. Therefore, the order
of the ZFP and ZFE should be larger then or equal to the minimum
order requirement in eq.(24) and (43). Let LH be the order of H(z),
and LG = LH + LG and LF = LH + LF . The sufficient conditions
for the iterative algorithm to has a solution are

LG ≥ K(LH + LF )

NP − K
− 1, (44)

LF ≥ K(LH + LG)

MP − K
− 1. (45)

As a consequence, the sufficient conditions in terms of N , K and
LH are listed in table I. The detail derivation can be found in [16].

VII. SIMULATION RESULTS

Simulation results of a MIMO system with 3 transmit and 3 receive
antennas are presented. The orders of channel H(z), precoder G(z)
and equalizer F(z) are set to be 5 (i.e. LH = LG = LF = 5).
The coefficients of the channel transfer function H(z) are Rayleigh
distributed with uniform delay profile [4]. Moreover, both the source
vector size and the oversampling rate of the system are set to be
3 (i.e. K = P = 3). The source data are modulated using QPSK.
Fig.2 showed the BER performance of the system with and without
using the iterative joint optimization algorithm. For the case without
using the joint optimization algorithm, a trailing zero precoder (i.e.
G(z) = I3) and a corresponding FIR LS optimal equalizer were
used. In the case of joint optimization algorithm, the performance
of the system using different values of stopping threshold, α, are
considered.

Compare with the case without using the joint optimization algo-
rithm, the simulation results showed that the system using joint op-
timization algorithm can obtained about 3dB gain. This performance
gain increases with the increase of channel SNR. In the cases of joint
optimization algorithm, the average number of iteration required for
α equal 1%, 10% and 20% are 4.933, 2.136 and 2 respectively. The
simulation results in Fig.2 showed that the system BER performance
is improved with the reduction in the value of α.

VIII. CONCLUSION

An iterative joint FIR precoder-equalizer design algorithm for
STMC based MIMO system is proposed. This is the first algorithm
available in literature that jointly designs both the FIR ZFE and
ZFP without the requirement of having a guard period larger than or
equal to the channel order. Although the proposed algorithm can only

guarantee suboptimal precoder-equalizer design, simulation results
showed that a substantial improvement in the error performance can
be obtained using the proposed algorithm without decreasing the
spectral efficiency of the system. In addition, the LS FIR ZFP design
is parameterized which found applications in communication systems
with fixed equalizer structure.

REFERENCES

[1] X.G.Xia, G.Wang and P.Fan, “Space-Time Modulated Codes for Mem-
ory Channels: Capacity and Information Rates, Zero-Forcing Decision
Feedback Equalizer,” Proc. IEEE Sensor Array and Multichannel Signal
Processing Workshop, pp.183-187, 2000.

[2] X.G.Xia, Modulated Coding for Intersymbol Interference Channels,
Marcel Dekker, 2000.

[3] M.W.Kwan and C.W.Kok, “Minimal Transmit Redundancy FIR Zero-
Forcing Equalizer for Space-Time Correlated Noise ISI MIMO Channel
with Space-Time Modulated Code,” Proc. IEEE PIMRC, vol.2, pp.1307-
1311, 2003.

[4] T.S.Rappaport, Wireless Communication: Principles and Practice,
Prentice-Hall, 1996.

[5] G.J.Foschini and M.J.Gans, “On Limits of Wireless Communications in a
Fading Environment when Using Multiple Antennas,” Wireless Personal
Commun., vol.6, no.3, pp.311-335, 1998

[6] G.J.Foschini, “Layered space-time architecture for wireless communi-
cation in a fading environment when using multiple antennas,” Bell
Laboratories Technical Journal, vol.1, no.2, pp.41-59, 1996.

[7] P.W.Wolniansky, G.J.Foschini, G.D.Golden and R.A.Valenzuela “V-
BLAST: an architecture for realizing very high data rates over the rich-
scattering wireless channel,” Proc. IEEE URSI Int. Symp. Sig., Systems,
Electronics, pp.295-300, 1998.

[8] G.G.Raleigh and J.M.Cioffi, “Spatio-temporal coding for wireless com-
munication,” IEEE Trans. on Commun., vol.46, no.3, pp.357-366, 1988.

[9] A.Yongacoglu and M.Siala, “Space-time codes for fading channels,”
Proc. IEEE VTC, vol.5, pp.2495-2499, 1999.

[10] A.Scaglione, P.Stoica, S.Barbarossa, G.B.Giannakis and H.Sampath,
“Optimal designs for space-time linear precoders and decoders,” IEEE
Trans. on Signal Process., vol.50, no.5, pp.1051-1064, May 2002.

[11] H.Sampath, P.Stoica and A.Paulraj, “Generalized linear precoder and de-
coder design for MIMO channels using the weighted MMSE criterion,”
IEEE Trans. on Commun., vol.49, no.12, pp.2198-2206, Dec. 2001.

[12] A.Scaglione and S.Barbarossa, “Filterbank Transceivers Optimizing In-
formation Rate in Block Transmissions over Dispersive Channels,” IEEE
Trans. on Information Theory, vol.45, no.3, pp.1019-1032, Apr 1999.

[13] Y.P.Lin and S.M.Phoong, “Optimal ISI-Free DMT Transceivers for Dis-
torted Channels with Colored Noise,” IEEE Trans. on Signal Process.,
vol.49, no.11, pp.2702-2712, Nov 2001.

[14] H.Sampath, P.Stoica and A.Paulraj, “Generalized Linear Precoder and
Decoder Design for MIMO Channels using the Weighted MMSE Crite-
rion,” IEEE Trans. on Commun. vol.49, no.12, pp.2198-2206, Dec 2001.

[15] A.Yener and S.Serbetli, “Transmitter Optimization for Multiuser MIMO
Systems,” Proc. IEEE ISWC, 2002.

[16] M.W.Kwan and C.W.Kok, “Iterative Joint Optimization of Minimal
Transmit Redundancy FIR Zero-Forcing Precoder-Equalizer System for
MIMO-ISI Channel,” Submitted to IEEE Trans. Wireless Commun. Jan.
2004.

0 2 4 6 8 10 12 14
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
s
/N

0
 per receive antenna

B
E

R

w/o Iter. Opt.
Iter. Opt. (Threshold = 20%)
Iter. Opt. (Threshold = 10%)
Iter. Opt. (Threshold = 1%)

Fig. 2. BER of system with and without iterative joint optimization algorithm.
(K = N = M = P = 3, LH = LG = LF = 5).
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