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ABSTRACT

This paper considers a robust FIR precoder design prob-
lem for frequency-selective multiple-input multiple-output
(MIMO) wireless systems under transmit power constraints
with imperfect channel knowledge at the transmitter. The
robust design problem requires finding the optimal power
constrained FIR precoder for the worst-case channel model
within a neighborhood of the estimated channel. The neigh-
borhood is formed by placing a bound on Kullback-Leibler
(KL) divergence between the actual and estimated channels.
We show that the optimal power constrained FIR precoder
designed for the estimated channel under the assumption of
perfect channel knowledge is robust when channel uncer-
tainties are measured by the KL divergence “metric”.

1. INTRODUCTION

For the case of a left coprime FIR channel, which arises
generically when the number p of transmit antennas is larger
than the number q of receive antennas, the matrix Bezout
identity [1] can be employed to design a FIR MIMO pre-
coder that equalizes exactly the channel at the transmitter.
Unfortunately, when deep fades are present in the MIMO
channel frequency response, Bezout precoders usually in-
crease the transmit power. To overcome this problem, a
method was proposed in [2] for the optimal design of FIR
precoders under transmit power constraints. It reduces the
design of FIR precoders to the minimization of a quadratic
convex objective function under a quadratic convex con-
straint, so it can be solved by using Lagrangian duality [3].
The design technique assumes, however, that the the chan-
nel is perfectly known at the transmitter. Channel state in-
formation (CSI) can be obtained at the receiver through the
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use of either traning sequences or blind/semi-blind estima-
tion. At the transmit end, CSI can be acquired either by us-
ing a feedback channel between the receiver and transmitter,
or from previous receive measurements due to the channel
reciprocity property. However, in real systems, channel es-
timates at the transmitter tend to be inaccurate, owing to the
time varying nature of channels and feedback delay. The
impact of channel estimation errors is important in prac-
tice and needs to be taken into account when designing a
precoder. In this paper we examine the design of a robust
FIR precoder with transmit power constraints and imperfect
channel knowledge. The goal is to synthesize a power con-
strained precoder which minimizes the power of the residual
intersymbol interference (ISI) and interchannel interference
(ICI) for the worst channel located in a neighborhood of
the estimated channel. Following [4], the neighborhood is
formed by placing a bound on the Kullback-Leibler (KL)
divergence between the actual channel and the estimated
channel. The use of the KL divergence is rather natural as
a metric for model mismatch since it is commonly used by
statisticians [5] for fitting statistical models, and by using a
differential geometric viewpoint it is argued in [6] that KL
divergence is the natural geometric ”distance” between sys-
tems. Therefore, the design of a robust power constrained
FIR precoder reduces to the solution of a min-max prob-
lem where we seek to find the optimal precoder for the least
favorable channel within a neighborhood specified by the
KL divergence between the actual and estimated channels.
We show that the optimal precoder for the estimated chan-
nel under the assumption of perfect channel knowledge is
robust, but its performance is impacted by the presence of
uncertainties. This result is consistent with those obtained
in [4, 7] for robust estimation and detection with a KL cri-
terion. A precise characterization of the performance loss
in function of the allowable KL tolerance is provided and
simulations are presented.
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2. KL DIVERGENCE FOR THE ROBUST
PRECODER DESIGN

Given a q × p channel H(z) =
∑d

l=0 H(l)z−l of order d,
the error between H(z) and the estimated channel Ĥ(z) =∑d

l=0 Ĥ(l)z−l can be expressed as

H�(z) =
d∑

l=0

H�(l)z−l = H(z) − Ĥ(z) . (2.1)

When the number p of transmit antennas is larger than the
number q of receive antennas, a p× q FIR precoder F(z) =∑r

n=0 F(n)z−n of degree r can be used to equalize the
given channel at the transmitter. The sampled received vec-
tor sequence {y(n) ∈ C

q , n ∈ Z} can be written as

y(n) = H(n) ∗ F(n) ∗ x(n) + v(n) , (2.2)

where ∗ represents the convolution operation, v(n) is a vec-
tor complex circular WGN sequence independent of x(n),
with zero-mean and variance σ2

vIq , and the input vector se-
quence x(n) is assumed to have zero mean and covariance
matrix σ2

xIq . For the actual channel H(z), the probability
density fH(y(n)|xn) of y(n) conditioned on xn is a Gaus-
sian distribution with mean HΓ(F)xn and variance σ2

vIq,
where the (d + r + 1)q × 1 column vector xn and the
q × (d + 1)p row block matrix H are given by

xn =
[

xH(n) xH(n − 1) . . . xH(n − r − d)
]H

H =
[

H(0) H(1) . . . H(d)
]

, (2.3)

and the (d+1)p× (d+ r +1)q block Toeplitz matrix Γ(F)
takes the form

Γ(F) =

⎡
⎢⎢⎢⎣

F(0) . . . F(r) 0 . . . 0
0 F(0) . . . F(r) . . . 0
. . .

. . .
. . .

. . .
. . .

0 . . . 0 F(0) . . . F(r)

⎤
⎥⎥⎥⎦ . (2.4)

Similarly, for the estimated channel Ĥ(z), the conditional
probability density fĤ(y(n)|xn) is a Gaussian distribution
with mean ĤΓ(F)xn and variance σ2

vIq , where the matrix
Ĥ has the same form as H except that H(n) is replaced by
Ĥ(n). Since these two Gaussian densities have the same
variance matrix, but different means, the Kullback-Leibler
(KL) divergence or relative entropy of fH(y(n)|xn) with
respect to fĤ(y(n)|xn) can be expressed as

D(H, Ĥ|xn)

=
∫

ln
[fH

(
y(n)|xn

)
fĤ

(
y(n)|xn

)]
fH

(
y(n)|xn

)
dy(n)

= ||H�Γ(F)xn||22/(2σ2
v) , (2.5)

where ||.||22 denotes the squared Euclidean norm and H� =
H − Ĥ. Then the KL divergence of fH(y(n)) with respect
to fĤ(y(n)) is given by

D(H, Ĥ) = Exn
[D(H, Ĥ|xn)] = σ2

x||H�Γ(F)||2F /(2σ2
v),

(2.6)
where ||M||2F = tr(MMH) denotes the squared Frobenius
norm.

The neighborhood H formed by all channels whose KL
divergence with respect to the estimated channel Ĥ(n) is
less c can be characterized as

σ2
x||H�Γ(F)||2F /(2σ2

v) ≤ c ⇔ tr
[
Γ(F)HHH

�H�Γ(F)
]
≤ c′,

(2.7)
where c′ = 2cσ2

v/σ2
x. Our goal in this paper is to find the

optimal power constrained precoder for the least favorable
channel within the neighborhood of the estimated channel
specified by (2.7).

3. ROBUST PRECODER DESIGN WITH A KL
DIVERGENCE BOUND

The system we consider has p transmit and q receive an-
tennas and we assume p > q. For a left coprime channel,
which arises generically when p > q, there exists a p × q
FIR matrix F(z) obeying the matrix Bezout identity

H(z)F(z) = E(z)
�
= diag{z−ki , 1 ≤ i ≤ q} , (3.1)

where the integer delays ki can be selected arbitrarily. Pre-
coders F(z) obeying (3.1) form the class of Bezout pre-
coders discussed in [1]. However Bezout precoders may
increase the transmit power significantly to compensate for
deep fades in the singular values of H(ejθ). To overcome
this defect, [2] proposed a precoder design technique that
achieves the optimal trade-off between channel equalization
and transmit power constraints when CSI is perfectly known
at the transmitter. When the estimated channel Ĥ(z) is dif-
ferent from the actual channel H(z), the objective function
evaluating the residual ISI and ICI power can be written as

J(F,H�)

=
1
2π

∫ π

−π

||[Ĥ(ejθ) + H�(ejθ)]F(ejθ) − E(ejθ)||2F dθ

= ||ĤΓ(F) + H�Γ(F) − E||2F , (3.2)

where the target zero-forcing matrix E of dimension q ×
(d + r + 1)q is given by

E =
[

E(0) E(1) . . . E(d + r)
]

. (3.3)

Given the objective function, the robust precoder design
with a KL bound can be formulated as a min-max problem
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of the form

min
F

max
H�

J(F,H�)

s. t. tr[Γ(F)HHH
�H�Γ(F))] ≤ c′ ,

tr[FHF] ≤ PT . (3.4)

where F =
[

FH(0) FH(1) . . . FH(r)
]H

has di-
mension (r + 1)p × q. To solve this min-max problem, we
can first maximize J(F,H�) with respect to H� under the
constraint (2.7) and then once the least favorable channel
has been identified, we can synthesize the optimal precoder
F for this channel. The Lagrangian associated with maxi-
mization of J(F,H�) under the constraint (2.7) takes the
form

L(F,H�, λ) = J(F,H�)+λ(c′−||H�Γ(F)||2F ) , (3.5)

where λ is chosen such that the Hessian�2
H�

L(F,H�, λ) =
(1− λ)Γ(F)Γ(F)H is negative semi-definite, i.e. λ ≥ 1. In
this case, the function L(F,H�, λ) is concave in H� and
the maximum is unique and obeys the gradient condition

�H�L(F,H�, λ)

=
[
ĤΓ(F) + H�Γ(F) − E − λH�Γ(F)

]
Γ(F)H

= 0 . (3.6)

Since Γ(F)H has full row rank, we have

ĤΓ(F) + Hmax
� Γ(F) − E − λ∗Hmax

� Γ(F) = 0 ,

which yields

Hmax
� Γ(F) =

E − ĤΓ(F)
1 − λ∗ . (3.7)

Here λ∗ satisfies the Karush-Kuhn-Tucker condition c′ =
||Hmax

� Γ(F)||2F , which results in

λ∗ = 1 +

√
||E − ĤΓ(F)||2F

c′
. (3.8)

Substituting the expressions (3.7) and (3.8) for H�Γ(F)
and λ inside (3.5), the worst-case objective function is given
by

M(F) = L(F,Hmax
� , λ∗) = [

√
||E − ĤΓ(F)||2F +

√
c′]2 .
(3.9)

This function represents the residual ISI and ICI power for
the least favorable channel in the neighborhood H centered
around the estimated channel Ĥ. The next step is to find
the precoder minimizing M(F) under a transmit power con-
straint. This is equivalent to minimizing ||E − ĤΓ(F)||2F ,

which is also equivalent to minimizing ||E′ − Γ(Ĥ)F||2F
where the (d + r + 1)q × (r + 1)p block Toeplitz matrix
Γ(Ĥ) takes the form

Γ(Ĥ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ĥ(0) 0
. . . 0

... Ĥ(0)
. . .

...

Ĥ(d)
...

. . . 0

0 Ĥ(d)
. . . Ĥ(0)

. . .
. . .

. . .
. . .

0 0 . . . Ĥ(d)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.10)

and the block column matrix

E′ =
[

EH(0) EH(1) . . . EH(r + d)
]H

(3.11)

has dimension (d + r + 1)q × q. Then the optimal precoder
design for the worst-case channel model reduces to

min W (F) = ||E′ − Γ(Ĥ)F||2F
s .t tr(FHF) ≤ PT . (3.12)

Thus the robust precoder design with a KL divergence bound
and a transmit power constraint coincides with the standard
power constrained optimal precoder design problem for the
estimated channel under perfect channel information, which
is consistent with the results of [4, 7]. Since the Hessian
�2W (F) = Γ(Ĥ)HΓ(Ĥ) is positive semi-definite, the ob-
jective function W is convex. The constraint is also convex,
so the resulting convex optimization problem can be solved
either in primal space or dual space [3]. Because of the
large number of coefficients of F, the primal problem has a
large dimension, whereas the dual problem is scalar prob-
lem, since there is only one constraint. Therefore, we solve
the dual form of the optimization problem.

Following the approach of [2], The Lagrangian associ-
ated with the minimization problem (3.12) takes the form

Λ(F, µ) = W (F) + µ
(
tr(FHF) − PT

)
. (3.13)

In order to find the saddle point (F∗, µ∗), we first fix µ and
minimize the Lagrangian over F, which yields

F∗(µ) = (M + µI)−1Γ(Ĥ)HE′ , (3.14)

where M
�
= Γ(Ĥ)HΓ(Ĥ). The dual function is then given

by
G(µ) = Λ(F∗(µ), µ) =

tr
[
−E′HΓ(Ĥ)(M+µI)−1Γ(Ĥ)

H
E′

]
+q−µPT (3.15)

over the domain D = {µ : µ ≥ 0,M + µI > 0}. The
unique solution µ∗ of the dual problem is obtained by max-
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imizing the concave function G(µ) over D. This can be ac-
complished by using Newton techniques. Then, substituting
µ∗ in (3.14) gives the solution

F∗ = (M + µ∗I)−1Γ(Ĥ)HE′ (3.16)

of the robust precoder design problem

4. SIMULATION RESULT

In the simulations below, a 4-input-2-output channel with
length 5 is considered and uncoded QPSK symbols are trans-
mitted. The SNR is defined as SNR = tr(FFH)σ2

x/σ2
v .

Fig. 1 shows the BER performance of robust precoders vs.
the bound c′ on the KL divergence when SNR = 10dB
where c′ is normalized, i.e., c′ = ||H�Γ(F)||2F

||ĤΓ(F)||2F
. The dashed

and star curves represent the BER performance of the opti-
mal precoder if the signal is transmitted over the estimated
channel and the worst-case channel, respectively. For the
worst-case channel, as the bound inceases, the BER perfor-
mance of robust precoders degrades, i.e., if the desired BER
is less than 10−2, the KL divergence bound c′ must be less
than 0.1. Fig. 2 shows the BER performance of the robust
precoder vs. SNR when c′ is fixed as 0.1.

5. CONCLUSION

In this paper, we have considered the robust design of a
power constrained FIR precoder for an imperfectly known
frequency-selective MIMO channel. The channel is assumed
to be located within a neighborhood centered on the esti-
mated channel and obtained by bounding the KL divergence
between the actual and estimated channels. This design
technique is applicable to unbalanced channels with p > q.
It formulates the design of robust precoders as a min-max
problem where the goal is to find the power constrained
precoder minimizing the residual ISI and ICI for the least
favorable channel in the given neighborhood. By solving
this min-max problem, the robust precoder design with im-
perfect CSI is reduced to a standard power constrained pre-
coder design problem for the estimated channel under per-
fect CSI.
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