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ABSTRACT

A new computationally simple approach to blind decoding of or-
thogonal space-time block codes (STBCs) is proposed. Our ap-
proach estimates the channel matrix in a closed form and uses this
estimate in the maximum likelihood (ML) receiver to decode the
symbols. It exploits specific properties of the orthogonal STBCs
and is free of major drawbacks of other blind space-time decoding
schemes.

1. INTRODUCTION

Orthogonal STBCs (OSTBCs) [1]-[2] represent an attractive class
of space-time codes because they enjoy full diversity gain and low
decoding complexity. If the channel state information (CSI) is
available at the receiver, the optimal ML decoder for this class
of codes is a simple linear receiver followed by the symbol-by-
symbol detector. Although training approaches can be used to ob-
tain the CSI at the receiver, the price that has to be paid is the
reduced bandwidth efficiency and (potentially) inaccurate channel
estimates which may result in a severe degradation of the decoding
performance. This has been a strong motivation to develop blind
space-time decoders [3]-[7].

In this paper, we present a novel computationally efficient ap-
proach to blind decoding of OSTBCs. Our approach is based on
estimating the channel matrix in a closed form and using this esti-
mate in the ML decoder. It exploits specific properties of OSTBCs
and is free of major drawbacks of other blind receivers. In particu-
lar, there is no SNR penalty as in the algorithms of [3]-[6] provided
that the coherence time of the channel is sufficiently large. Further-
more, unlike the blind approach of [7], our technique is applicable
to the majority of full-rate OSTBCs. Moreover, it finds the chan-
nel estimate in a closed form and, therefore, it does not have global
convergence problems that iterative techniques may have.

2. BACKGROUND

Let us assume a MIMO system with N transmit and M receive
antennas and flat block-fading channel. Then, we can use the fa-
miliar model [2]

Y = XH + V (1)

where Y � [yT (1) · · · yT (T )]T , X � [xT (1) · · · xT (T )]T ,
and V � [vT (1) · · · vT (T )]T are the matrices of the received
signals, transmitted signals, and noise, respectively, H is the N ×
M complex channel matrix, T is the block length, and (·)T de-
notes the transpose. Here, y(t) = [y1(t) · · · yM (t)], x(t) =
[x1(t) · · · xN (t)], and v(t) = [v1(t) · · · vM (t)] are the com-
plex row vectors of the received signal, transmitted signal, and
noise, respectively. We assume that the noise is both spatially and

temporally white with the variance of σ2 per complex dimension.
The slow fading channel case is considered, i.e., the channel co-
herence time is assumed to be substantially larger than the data
block length T .

We denote the complex information symbols prior to space-ti-
me encoding as s1, . . . , sK and assume that they are zero-mean ra-
ndom variables drawn from (possibly different) constellations Uk,
k = 1, 2, . . . , K . Let us introduce the vector s � [s1 · · · sK ]T .
Note that s ∈ S where S = {s(1), · · · , s(L)} is the set of all pos-
sible symbol vectors and L is the cardinality of this set. The T ×N
matrix X(s) is called an OSTBC if [2]: (i) all elements of X(s)
are linear functions of the K complex variables s1, s2, . . . , sK

and their complex conjugates; (ii) for any s, this matrix satisfies
XH(s)X(s) = ‖s‖2IN where IN is the N × N identity matrix
and ‖ · ‖ denotes the Euclidean norm.

It can be readily verified [8] that the matrix X(s) can be writ-
ten as

X(s) =
K∑

k=1

(CkRe{sk} + DkIm{sk}) (2)

where the matrices Ck and Dk are defined as Ck � X(ek) and
Dk � X(jek), respectively. Here, j =

√−1 and ek is a K × 1
vector having one in the kth position and zeros elsewhere. Using
(2), one can rewrite the model (1) as [8]

Y = A(H)s + V (3)

where the “underline” operator for any matrix P is defined as

P = [(vec{Re(P)})T , (vec{Im(P)})T ]T (4)

and vec{·} is the vectorization operator stacking all columns of a
matrix on top of each other. The 2MT × 2K real matrix A(H) in
(3) is given by A(H) = [C1H · · · CKH D1H · · · DKH]. It
is easy to verify that, regardless of the value of the channel matrix
H, the columns of A(H) have the same norms and are orthogonal
to each other [8]:

A
T (H)A(H) = ‖H‖2

F I2K (5)

where ‖ · ‖F denotes the Frobenius norm.
If H is known at the receiver, the optimal (ML) decoder uses

this knowledge to obtain lopt = arg minl∈{1,...,L} ‖Y − Y(l)‖F

and then exploits lopt to decode the data symbols [2]. Here, Y(l)

is the noise-free received data matrix that corresponds to the vector
of information symbols s(l).

The ML decoder can also be viewed as the MF receiver whose
output SNR is maximized [9]. In the OSTBC case, the following
equivalent MF interpretation of the ML decoder has been derived
in [8]. First of all, the estimate

ŝ =
1

‖H‖2
F

A
T (H)Y (6)
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of s is obtained and then the estimate ŝ = [IK jIK ] ŝ of the vector
s is computed. The kth element of ŝ is compared with all points
in Uk and the closest point in this constellation is introduced as an
estimate of the kth entry of s. This procedure is repeated for all
k = 1, 2, . . . , K (i.e., the decoding is done symbol-by-symbol).

3. BLIND SPACE-TIME DECODING

Let us introduce the 2MN × 1 channel vector h � H and, with
a small abuse of notation, let us use hereafter A(h) instead of
A(H). Then, (5) can be rewritten as

A
T (h)A(h) = ‖h‖2

I2K (7)

As A(h) is linear in h, there exists a unique 4KMT × 2MN
matrix Φ such that

vec{A(h)} = Φh (8)

The kth column of Φ can be written as [Φ]k = vec{A(ek)}
where the dimension of ek is now 2MN × 1. Using (3), we have
that the covariance matrix of the real-valued vectorized data Y is
given by

R � E{Y Y
T } = A(h)ΛsA

T (h) + (σ2/2)I2MT (9)

where Λs � E{s sT } is the covariance matrix of the real vec-
tor s. Since the elements of s can be assumed uncorrelated with
each other, Λs is a diagonal matrix. Each diagonal element of Λs

represents the average power of the real or imaginary part of the
corresponding data symbol and depends only on the shape of the
constellation of that particular symbol. Hence, the matrix Λs is
known at the receiver.

Multiplying (9) from the right by A(h)/‖h‖ and using (7),
we obtain that

RA(h)/‖h‖ = (A(h)/‖h‖) [‖h‖2
Λs + (σ2/2)I2K

]
(10)

Since A(h)/‖h‖ has orthonormal columns and ‖h‖2Λs + σ2

2
I2K

is a diagonal matrix, (10) can be viewed as the characteristic equa-
tion for the data covariance matrix R. This means that the diagonal
elements of the matrix

Λ � ‖h‖2
Λs + (σ2/2)I2K (11)

are the 2K largest eigenvalues of the matrix R while the columns
of A(h)/‖h‖ are the corresponding (normalized) eigenvectors.

Lemma 1: Let Q be an m × q real matrix where q < m.
Then, for any m × m real symmetric matrix P the solution to the
following optimization problem

max
Q

tr{QT
PQ} subject to Q

T
Q = Iq (12)

is given by any matrix Q∗ whose column space is the same as the
subspace spanned by the q principal eigenvectors1 of P and, for
any such Q∗,

tr{QT
∗ PQ∗} =

q∑
i=1

νq (13)

where νi, i = 1, . . . , q are the q largest eigenvalues of P.
Proof: See [10]. �

1i.e., the eigenvectors that correspond to the q largest eigenvalues.

Replacing P by R and setting q = 2K in (12), we obtain from
Lemma 1 that the solution to the following optimization problem

max
Q

tr{QT
RQ} subject to Q

T
Q = I2K (14)

will be given by any matrix Q∗ which satisfies

range{Q∗} = range{A(h)} (15)

Moreover, from Lemma 1 and the established properties of R, we
have

tr{QT
∗ RQ∗} = tr{Λ} (16)

Let us replace Q in (14) by A(h̃)/‖h̃‖ where h̃ is a vector of
optimization variables. In this case, the constraint in (14) becomes
AT (h̃)A(h̃)/‖h̃‖2 = I2K . According to (7), this constraint is
satisfied for any h̃ and, therefore, is redundant. Omitting it, we
obtain the following unconstrained optimization problem:

max
h̃

tr{AT (h̃)RA(h̃)}/‖h̃‖2 (17)

It is important that the problems (14) and (17) are not equivalent to
each other because the matrix A(h̃) in (17) has a particular struc-
ture while the matrix Q in (14) is unstructured. Therefore, the sets
of solutions to (14) and (17) for the matrices Q and A(h̃), respec-
tively, may be different. Moreover, this means that the maximum
value of the objective function in (17) cannot exceed the maximum
value of the objective function in (14).

Inserting (9) into the objective function (17) and using (7), we
obtain that for h̃ = h,

tr{AT (h̃)RA(h̃)}/‖h̃‖2
∣∣
h̃=h

= tr{Λ} (18)

Comparing (16) and (18), we obtain that the maxima of the objec-
tive functions in (14) and (17) coincide and, therefore, in terms of
Q and A(h̃) the set of all possible solutions to (17) represents a
subset of the set of all possible solutions to (14). Using this prop-
erty and (15), we obtain that for any h̃ achieving the maximum in
(17),

range{A(h̃)} = range{A(h)} (19)

At this point, we make a conjecture2 that for most OSTBCs, (19)
holds true if and only if h̃ = γh where γ is a real value.

Let our conjecture hold true. In this case, if any value of h̃

is obtained for which A(h̃) is a solution to (17) then the channel
vector h can be obtained from this value of h̃ up to a real scalar.

Now, let us find a closed-form solution to (17). To simplify
the cost function in (17), we can express its numerator as

tr{AT (h̃)RA(h̃)} = (vec{A(h̃)})T (I2K ⊗ R)vec{A(h̃)}
(20)

Using (8), we can write

vec{A(h̃)} = Φh̃ (21)

Inserting (21) into (20), we can rewrite (20) as

tr{AT (h̃)RA(h̃)} = h̃
T
Φ

T (I2K ⊗ R)Φh̃ (22)

and the optimization problem (17) can be expressed as

max
h̃

h̃
T
Φ

T (I2K ⊗ R)Φh̃/‖h̃‖2 (23)

2We will verify this conjecture numerically and demonstrate that it
holds true for most of OSTBCs with a few exceptions.
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Note that all solutions to (23) belong to the subspace spanned by
the n principal eigenvectors of the matrix ΦT (I2K ⊗R)Φ where
n is the multiplicity order of its largest eigenvalue. However,
assuming that our conjecture holds true, we have that this sub-
space is one-dimensional and, therefore, the maximal eigenvalue
of ΦT (I2K ⊗R)Φ has the multiplicity order equal to one. Hence,
ignoring the scaling ambiguity, the normalized solution to (23) can
be written as

h̃opt = P{ΦT (I2K ⊗ R)Φ} (24)

where P{·} denotes the normalized principal eigenvector of a ma-
trix (‖P{·}‖ = 1). Therefore, the true channel vector h can be
written as

h = ‖h‖P{ΦT (I2K ⊗ R)Φ} (25)

In what follows, we propose a simple method to determine ‖h‖.
Using Lemma 1 along with (11), we have that

max
h̃

tr{AT (h̃)RA(h̃)}/‖h̃‖2 = ‖h‖2tr{Λs} + Kσ2 (26)

Using (24) and (26), the value of ‖h‖ can be obtained as

‖h‖ =

√
(tr{AT (h̃opt)RA(h̃opt)} − Kσ2)/tr{Λs} (27)

Using (25) along with (27), we obtain the true channel vector h in
a closed form as

h =

√
(tr{AT (h̃opt)RA(h̃opt)} − Kσ2)/tr{Λs} h̃opt (28)

where h̃opt is given by (24).
In practice, the true covariance matrix R is unavailable. In-

stead of it, the sample covariance matrix

R̂ =
1

J

J∑
i=1

Yi Yi
T =

1

J
YY

T (29)

can be used. Here, Y � [Y1 · · · YJ ] is the matrix of the received
data, Yi is the ith data block, and J is the number of data blocks
used.

Replacing the true covariance matrix R by the sample covari-
ance matrix R̂ in (28), we obtain the following consistent closed-
form blind channel estimate:

ĥ =

√
(tr{AT (

ˆ̃
hopt)R̂A(

ˆ̃
hopt)} − Kσ2)/tr{Λs} ˆ̃

hopt (30)

where the estimate

ˆ̃
hopt = P{ΦT (I2K ⊗ R̂)Φ} (31)

is obtained by replacing R by R̂ in (24).
It is important to stress that if constant modulus constellations

are used for each of the encoded symbols, the symbol-by-symbol
detector is not sensitive to multiplication of the channel estimate
by any real constant. This fact follows from the structure of the
linear receiver (6) and linearity of A(h) in h. Therefore, in the
constant modulus case, the scalar square root factor in (30) can be

ignored, i.e., the value of ˆ̃
hopt can be directly used as the channel

estimate.
Our joint blind channel estimation and symbol detection algo-

rithm can be summarized as follows:

1. Obtain R̂ from J consecutive received data vectors using
(29). If the symbol constellations are not constant modulus,
compute the estimate ĥ of the channel vector h using (30)

and (31). Otherwise, use ĥ =
ˆ̃
hopt of (31) as the channel

estimate.

2. Use the so-obtained ĥ in the MF receiver to obtain ˆ̂s =
1

‖ĥ‖2

F

AT (ĥ)Y and ˆ̂s = [IK jIK ] ˆ̂s where the “double-

hat” symbol stresses that the signal detection is blind.

3. Decode the kth symbol (k = 1, 2, . . . , K) as a point of the
constellation Uk which is closest to the kth entry of ˆ̂s.

If constant modulus constellations are used for each of the en-
coded symbols, the knowledge of σ2 is not required in our algo-
rithm. However, this knowledge is required if the symbol constel-
lations are not constant modulus. In practice, the noise power can
be estimated by averaging the 2MT −2K smallest eigenvalues of
the sample covariance matrix R̂.

The algorithm proposed is suitable for batch implementation.
However, its computationally efficient on-line implementation can
be also derived using subspace tracking techniques.

4. RELATIONSHIP TO THE RELAXED BLIND ML
ESTIMATOR

Let the ith (i = 1, 2, · · · , J) received data vector Yi be generated
according to the real data model (3), so that

Yi = A(h)si + Vi (32)

In the blind (non-coherent) ML detector, the channel vector h and
the transmitted symbols si (i = 1, 2, . . . , J ) should be treated as
unknown deterministic parameters and their ML estimates can be
obtained by maximizing the log-likelihood (LL) function as

{ĥML, ŜML} = arg max
h

max
S∈Ω

log f(Y1,Y2, . . . ,YJ |S, h)

(33)
where S � [s1 s2 · · · sJ ] and Ω is the set of all possible val-
ues of S. The problem (33) has an exponential complexity but
can be simplified by relaxing the finite alphabet constraint S ∈ Ω.
Assuming that the noise vectors Vi (i = 1, 2, . . . , J ) are zero-
mean independent Gaussian random vectors with the covariance
matrix (σ2/2)I, we have that the conditional pdf of Yi is Gaus-

sian, that is, f(Yi | si, h) = (πσ2)−MT e−‖Yi−A(h)si‖
2/σ2

. Si-
nce all Yi (i = 1, . . . , J ) are independent random vectors, we
have f(Y1,Y2, . . . ,YJ |S, h) =

∏J
i=1 f(Yi | si,h). Hence,

we can write the relaxed blind ML decoder as

{ĥRML, ŜRML} = arg min
h

min
S

J∑
i=1

‖Yi − A(h)si‖2 (34)

In (34), the ith term of the summation is minimized for ŝiRML
=

AT (h)Yi/‖h‖2. Using this fact, (34) can be concentrated with
respect to S and after straightforward manipulations, we obtain

ĥRML = arg min
h

J∑
i=1

∥∥∥Yi − A(h)AT (h)Yi/‖h‖2
∥∥∥

2

= arg min
h

∥∥∥Y − A(h)AT (h)Y/‖h‖2
∥∥∥

2

F

= arg max
h

tr{AT (h)YY
T
A(h)}/‖h‖2

= arg max
h

tr{AT (h)R̂A(h)}/‖h‖2 (35)
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Figure 1: SERs versus SNR. First example.
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Figure 2: SERs versus SNR. Second example.

Comparing (35) with (17), we see that these two problems are
identical. Therefore, in the Gaussian case our blind channel es-
timator (30) can be viewed as the blind ML estimator in which the
finite alphabet constraint S ∈ Ω is relaxed.

5. SIMULATION RESULTS

Through simulations, we tested numerous generalized orthogonal
design and amicable design-based STBCs with different parame-
ters and rates. We found out that if M > 1 then our conjecture is
valid for all codes tested except the generalized orthogonal design
based STBCs with N = K (including Alamouti code).

We illustrate the performance of our blind decoder with two
examples. In the first example, we have chosen the full-rate OS-
TBC with N = 3, M = 4, and K = T = 4 (this code is given by
eqn. (27) of [2]). The BPSK signals are used in this example.

In the second example, we have tested the 3/4 OSTBC with
N = M = T = 4 and K = 3 (this code is given by eqn. (7.4.10)
of [5]). The QPSK signals are used in this example.

Figures 1 and 2 display the symbol error rates (SERs) versus
the SNR for the first and second examples, respectively. The SNR
is defined in the way similar to [7]. In both figures, our blind space-
time decoder with different numbers of blocks J is compared with

the differential modulation approach and the coherent ML decoder.
Note that, unlike the proposed and differential decoding schemes
tested, the coherent ML decoder exploits the exact knowledge of
the CSI at the receiver and is included in our figures only to illus-
trate performance losses of the blind techniques with respect to the
ideal (informed receiver) case. Two different types of differential
approaches have been used: in the first example, the technique of
[4] has been chosen, while in the second example, the technique
of [5] has been employed.

From the figures, it follows that in both examples our blind de-
coder performs substantially better than the differential approach
if J ≥ 10. With J ≥ 30, the performance of the proposed decoder
is very close to that of the coherent ML decoder.

6. CONCLUSIONS

A new computationally efficient closed-form approach to blind de-
coding of orthogonal space-time block codes has been proposed. It
is applicable to most of the OSTBCs and is free of common short-
comings (such as substantial performance penalties, high compu-
tational costs, scalar ambiguities, need of pilot symbols, etc.) of
the other known blind space-time decoding schemes.

7. REFERENCES

[1] S. M. Alamouti, “A simple transmit diversity technique for
wireless communications,” IEEE J. Sel. Areas in Communi-
cations, vol. 45, pp. 1451-1458, Oct. 1998.

[2] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time
block codes from orthogonal designs,” IEEE Trans. Inf. The-
ory, vol. 45, pp. 1456-1467, July 1999.

[3] B. M. Hochwald and W. Sweldens, “Differential uni-
tary space-time modulation,” IEEE Trans. Communications,
vol. 48, pp. 2041-2052, Dec. 2000.

[4] H. Jafarkhani and V. Tarokh, “Multiple transmit antenna
differential detection from generalized orthogonal design,”
IEEE Trans. Inf. Theory, vol. 47, pp. 2626-2631, Sept. 2001.

[5] E. G. Larsson and P. Stoica, Space-Time Block Coding
for Wireless Communications, Cambridge University Press,
Cambridge, UK, 2003.

[6] B. M. Hochwald and T. L. Marzetta, “Unitary space-
time modulation for multiple-antenna communications in
Rayleigh flat fading,” IEEE Trans. Inf. Theory, vol. 46,
pp. 543-564, March 2000.

[7] A. L. Swindlehurst and G. Leus, “Blind and semi-blind
equalization for generalized space-time block codes,” IEEE
Trans. Signal Processing, vol. 50, pp. 2489-2498, Oct. 2002.

[8] M. Gharavi-Alkhansari and A. B. Gershman, “Constellation
space invariance of space-time block codes with application
to optimal ML decoding,” in Proc. IEEE VTC’03, Orlando,
FL, Oct. 2003.

[9] G. Ganesan and P. Stoica, “Space-time block codes: a max-
imum SNR approach,” IEEE Trans. Inf. Theory, vol. 47,
pp. 1650-1656, May 2001.

[10] J. H. Manton, “Optimization algorithms exploiting unitary
constraints,” IEEE Trans. Signal Processing, vol. 50, pp.
635-650, March 2002.

IV - 476

➡ ➠


