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Abstract—Amicable Complex Orthogonal Design (ACOD), 

which is the complex version of Amicable Orthogonal Design 

first reported in [1], is proposed and its existence is proven.   

Using ACOD, new orthogonal space-time block codes 

(O-STBC) for four and eight transmit antennas are 

constructed.  Their maximum achievable code rates are 

proven to be as high as the existing O-STBC designs.   In 

addition, the new O-STBCs are shown to have better practical 

implementation features than the existing O-STBCs, as they 

do not require any transmit antenna to be turned off 

intermittently (which is beneficial for the power amplifier 

design), and they do not have irrational-number coefficients 

inside the codeword (which simplifies the hardware 

implementation).

I. INTRODUCTION

Orthogonal Space-Time Block Code (O-STBC) has been 

first proposed in [2] and generalized in [3]. It can provide 

full transmit diversity with simply linear decoding 

complexity. Due to these advantages, O-STBC has drawn a 

lot of research attraction, for example in [4], [5], [6] and etc.  

However, some of these O-STBCs require some transmit 

antennas to be turned off at regular intervals [4][5], while 

others have irrational-numbers in the code coefficients [3]. 

Regular switching-off of transmit antennas may lead to 

undesirable low-frequency interference, while 

irrational-number coefficient may require floating-point 

multiplication which lead to higher hardware cost.  In 

addition, the authors of [4] also highlighted an open issue in 

[7] regarding the design of O-STBC based on Amicable 

Orthogonal Design (AOD), i.e. whether the complex 

version of AOD exists and what is the maximum O-STBC 

code rate achievable from this design.  In this paper, we 

address this unsolved issue by defining a new orthogonal 

design, called Amicable Complex Orthogonal Design 

(ACOD).  The maximum code rate of O-STBC achievable 

by this design is derived. New O-STBCs for four and eight 

transmit antennas are constructed.  Their advantages over 

existing O-STBC designs are discussed.  

Section II of this paper will give an overview on O-STBC 

as well as the STBC signal model.  ACOD will be defined 

and solved in Section III, followed by new designs of 

O-STBC for four and eight transmit antennas in Section IV. 

The power distribution properties of the proposed and 

existing codes are discussed in detail in Section V.  Finally, 

Section VI will end this paper with conclusion.  

II. ORTHOGONAL STBC

It has been shown in [8] that a linear STBC, G, can be 

represented as: 
k R I

1
( )i i i ii
x jxG A B            (1) 

where the matrices A and B are called the dispersion 

matrices (both of dimension p n), xR and xI represent the 

real and imaginary part of a transmitted symbol, p

represents the code length, n represents the number of 

transmit antennas, and k represents the number of complex 

symbols being transmitted across p period of time (hence 

the code rate of a STBC is k/p).

 An O-STBC is one that can achieve full transmit diversity 

with linear decoding complexity, maximum SNR, and 

minimum Union PEP.  To design such a code, it has been 

proven in [3], [4], and [9] that its dispersion matrices A and 

B must satisfy the following constraints: 
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In addition, it is also desirable that the O-STBC has high 

code rate and minimum code length, i.e. k as large as 

possible and p as small as possible respectively.  For full 

diversity, it is also required that p  n. Hence a square 

design, i.e. p=n, is the minimum possible code length.  

 In the next section, we propose a new orthogonal design, 

called the Amicable Complex Orthogonal Design (ACOD), 
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to construct O-STBCs that satisfy the above-stated design 

objectives.

III. AMICABLE COMPLEX ORTHOGONAL DESIGN

Before discussing ACOD, a related orthogonal design 

called Complex Orthogonal Design (COD) is first reviewed.  

Definition 1 [10]: A COD of order n and of type (h1,…hr) (hi

positive integers) on the real commuting variables z1, …, zr

is an n n matrix Z, with entries from {0, 1z1,…, rzr where 

i is a fourth root of 1} satisfying  

H 2

1

r

i i ni
h zZ Z I  (3) 

Z can be expressed as 

1 1 r rz zZ D D  (4) 

where the Di are matrices of size n n with elements {0, 1,

j}, satisfying: 
H

H H
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Theorem 1 [10, Theorem 4]: Let (n) denote the maximum 

number of variables in a COD of order n (i.e. (n)=max(r)),

it has been shown that (n) H(n), where H(n)=2a+2 if 

n=2ab, b odd.

Next, we proceed to define ACOD by following the 

approach adopted in [1] to define Amicable Orthogonal 

Design from Orthogonal Design.  

Definition 2: Let the matrices X=A1x1+…+Asxs and 

Y=B1y1+…+Btyt be COD of the same order n where X is of 

type (f1,…fs) on the variables {x1,…,xs} and Y is of type 

(g1,…,gt) on the variables {y1,…,yt}. X and Y are said to be 

ACOD if

H H
X Y Y X  (6)

A necessary and sufficient condition for ACOD, as defined 

in Definition 2, to exist is that there exist a family of 

matrices {A1,…,As; B1,…,Bt} satisfying: 
H
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where Ai and Bq are all {0, 1, j} matrices of order n.

By comparing (7) and (2), it can be observed that the Ai

and Bq matrices defined above in (7) can be used as the 

dispersion matrices of an O-STBC since they satisfy the 

design constraints in (2).  On the other hand, the total 

number of variables (s+t)/2 of the ACOD represents the 

number of complex symbols k carried by the O-STBC.  

Next, the existence of ACOD and the upper bound on the 

maximum code rate k/p of O-STBC derived from ACOD are 

established.  

Proposition 1: Assume that the CODs X=A1x1+…+Asxs and 

Y=B1y1+…+Btyt as defined in Definition 2 exist. By letting:  

                 1
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a COD Z=D1z1+…+Drzr with r=s+t variables of type 

(f1,…fs, g1,…,gt) will be formed by Di in (8), 1 i  s+t.

Proof of Proposition 1: It can be shown that (8) satisfies all 

the constraints of (5). For example, 5(ii) can be verified as 

follows, by considering the case 1 i s and 1 q t.
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Proposition 2: The upper bound on the maximum total 

number of variables of an ACOD, i.e. s+t, is bounded by 

H(n).

Proof of Proposition 2: From Proposition 1, it is clear that 

whenever an ACOD design with s+t variables exist, a COD 

with r=s+t variables will exist. Furthermore it has been 

stated in Theorem 1 that the maximum number of variables 

of a COD is bounded by H(n), i.e.  max(r) H(n).  Hence 

the maximum total number of variables of an ACOD is also 

bounded by H(n), i.e. max(s+t) H(n). As a result 

Proposition 2 is proved. 

Proposition 3: The maximum total number of variables of 

an ACOD, i.e. max(s+t), is equal to the maximum total 

number of variables of an AOD.  

Proof of Proposition 3: The upper bound of maximum total 

number of variables of an AOD has been shown in [11, 

Section 5.32] to be 2a+2, if n =2ab, b odd. This is the same 

value as H(n), which is the upper bound for s+t. As a result 

Proposition 3 is proved.  

With the proof of Proposition 3, we have solved the open 

issue raised in [7], i.e. ACOD exists and it can achieve the 

same maximum code rate as AOD, which has been shown in 

[4] to have maximum code rate of ¾ for four transmit 

antennas and ½ for eight transmit antennas for a square 

complex O-STBC design. 

In the next section, two new O-STBCs are constructed 

based on our proposed ACOD design, and shown to be 
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more suitable for practical implementation than the existing 

O-STBCs.

IV. O-STBC FROM ACOD

Two complex O-STBCs for four transmit antennas have 

been proposed in the literature.  In this section, O-STBC 

proposed in [3] by Tarokh, Jafarkhani and Calderbank is 

denoted as “TJC”, while O-STBC proposed in [4] by 

Ganesan and Stoica is denoted as “GS”.
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By using complex weighting matrices of order 4 and 

weight 2 [11], we can construct ACOD matrices that lead to 

the following new O-STBC designs, denoted as G4, where 

A1 to A3, B1 to B3 are its dispersion matrices.  
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It can be observed from (9) that the TJC code contains 

the irrational-number 1/ 2 in some of the codeword entries. 

This makes hardware implementation more difficult, as 

floating-point multiplication is needed.  For the GS code in 

(10), on the other hand, one of the transmit antennas has to 

be turned off once in every four code symbol durations.  In 

(11), our proposed G4 code contains no irrational-number 

within the codeword.  Furthermore, by choosing the x1 and 

x2 symbols from different modulation constellation, e.g. x1

from QPSK and x2 from rotated-QPSK [12], it can be 

ensured that no zero will exist in the G4 codeword.  As a 

result, G4 does not require any transmit antenna to be turned 

off.  Due to these reasons, our proposed G4 code is 

advantageous over the TJC and GS codes in terms of 

practical implementation.  

Next, we consider the O-STBC designs for 8 transmit 

antennas. Two ½-rate O-STBCs for eight transmit antennas 

have been proposed in the literature: one is a non-square 

design from [3], the other is a square design from [5].  Due 

to the numerous advantages of square design (e.g. minimum 

decoding delay, applicability to differential/unitary 

space-time coding [13]), we only consider the square 

O-STBC from Tirkkonen and Hottinen [5], herein referred 

as “TH”, for comparison with our new code for 8 antennas, 

which is denoted as G8.

1 2 3 4

* *

2 1 3 4

* *

3 1 2 4

* *

3 2 1 4

* *

4 1 2 3

* *

4 2 1 3

* *

4 3 1 2

* * * *

4 3 2 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

TH    (12)  

* *

1 1 2 2 3 3 4 4

* * * * * *

1 1 2 2 3 3 4 4

* * * * * *

2 2 1 1 4 4 3 3

* *

2 2 1 1 4 4 3 3

* * * * * *

3 3 4 4 1 1 2 2

* *

3 3 4 4 1 1 2 2

* * * * * *

4 4 3 3 2 2 1 1

*

4

x x x x x x x x

jx jx jx jx jx jx jx jx

x x x x x x x x

jx jx jx jx jx jx jx jx

x x x x x x x x

jx jx jx jx jx jx jx jx

x x x x x x x x

jx jx

G8

*

4 3 3 2 2 1 1jx jx jx jx jx jx

(13)

By comparing TH and G8, it can be seen that there is no 

zero inside the codeword of G8. In other words, new design 

G8 does not require any transmit antenna to be turned off at 

any period of time.  This is in sharp contrast to the TH code, 

in which four transmit antennas to be turned off at any one 

time. 

In terms of decoding bit error rate performance, it can be 

showed that the new constructed O-STBCs perform the 

same as existing O-STBCs. A detailed discussion on the 

power distribution of O-STBC will next be discussed.  
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V. POWER UNIFORMIZATION

One of the targets of a good wireless front-end design is 

to minimize the linearity requirements of its power 

amplifier.  To achieve this, the transmitted signal should 

have the following power-distribution characteristics [14]: 

low peak-to-average power (Peak/ave) 

low average-to-minimum power (Ave/min) 

low probability Po that an antenna transmits zero 

the average transmit power should be stationary 

(power uniformity) 

The power distribution characteristics of our new ¾-rate 

O-STBC for four transmit antennas and ½-rate O-STBC for 

eight transmit antennas are compared against existing 

O-STBCs in Table 1 and Table 2 respectively.  

Table 1 Power distribution characteristics for four-antennas 

O-STBC with QPSK modulation 

Peak/av

e
Ave/min Po

TJC [3] 1.33 1.51 0 

GS [4] 1.33  25% 

GS with power- 

uniformized 1 [14]
3 3 0 

GS with power- 

uniformized 2 [14]
2.6 17.5 0 

G4
2 2.28 2.56 0 

Table 2 Power distribution characteristics for 

eight-antennas O-STBC with QOSK modulation 

Peak/av

e
Ave/min Po

TH [4] 2  50% 

G8 1 1 0 

As shown in Table 1, in terms of the peak/ave and 

ave/min characteristics, our newly constructed G4 code is 

better than the GS code in [14] (which has been optimized 

for power uniformity).  Although the TJC code has the best 

power-distribution characteristics, it contains 

irrational-number coefficient inside its codeword, as 

discussed earlier. 

Finally, Table 2 shows that our proposed G8 code has 

significantly better power-distribution characteristics over 

the TH code. 

VI. CONCLUSION

In this paper, Amicable Complex Orthogonal Design 

1 This value has been corrected from the original value stated in [14] 
2 Assume that x1 is QPSK, while x2 is rotated QPSK, which is 45 degree 

with respect to x1.

(ACOD) is defined and its existence is proven.  The 

maximum code rate of an O-STBC constructed by this new 

ACOD design is shown to be as high as existing O-STBC.  

Using the proposed ACOD design, new O-STBCs for 

four and eight transmit antennas that support complex 

constellation have been constructed.  In terms of practical 

implementation, these new codes show certain advantages 

over existing O-STBCs because the new codes do not 

require any transmit antenna to be turned off intermittently, 

they do not require floating-point scaling in the transmitted 

codeword, and they have better power distribution 

characteristics that lighten the design requirements of 

front-end power amplifiers.  

Finally, it should be noted that the examples presented in 

this paper are not the only possible new O-STBCs that can 

be constructed using our proposed ACOD design.  Many 

more codes with similar properties can be constructed.  

Being square orthogonal designs, the new codes presented 

in this paper also enjoy the benefits of having minimum 

code length, and they can be used as differential/unitary 

space-time codes. 
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