
LINEAR SPACE-TIME PRECODING FOR RICIAN FADING MISO CHANNELS

Mai Vu, Arogyaswami Paulraj

Stanford University
Department of Electrical Engineering

Stanford, CA 94305, USA
Emails: {mhv, apaulraj}@stanford.edu

Robin Evans

University of Melbourne
Department of Electrical and Electronic Engineering

Victoria 3010, Australia
Email: r.evans@ee.mu.oz.au

ABSTRACT

We study a space-time precoding technique for MISO wire-
less systems by employing a linear prefilter at each transmit an-
tenna. The channel is Rician fading, where the mean and variance
of the propagation paths are known to the transmitter. This model
includes the Rayleigh fading channels as special cases. We use
channel capacity as the optimizing criterion for the prefilter design.
This criterion provides a unified design of the prefilters for both
Rician and Rayleigh fading channels. The optimum prefilters are
functions of the channel mean and variance. The solution ranges
from beamforming for Rician channels with high K-factor, to uni-
tary diversity for Rayleigh fading cases, where delay diversity is
an example. MMSE equalizer is then used to detect the signal at
the receiver. Analysis of bounds on error rate performance and
numerical simulations for 4QAM input signal show significant di-
versity gains and array gains. The results also illustrate that having
partial channel knowledge at the transmitter can strongly enhance
the system performance.

1. INTRODUCTION

Multiple transmit antennas have long been recognized as an effec-
tive mean to improve wireless system performance [4, 6]. The use
of multiple antennas in wireless communication also increases the
channel capacity significantly [2]. Many space-time coding tech-
niques have been proposed, which include coding with memory
[4, 6, 5], and block coding [9, 10]. These works however, apply
specifically to Rayleigh fading channels. It is also of interest to de-
sign space-time codes for Rician fading channels, which are often
found in practice.

In this paper, we study a particular space-time coding scheme
with memory for Rician MISO wireless channels. The scheme
entitles to placing linear prefilters in front of the transmit anten-
nas. The optimum prefilters are found based on maximizing the
channel ergodic capacity. This is a new criterion for designing
space-time codes, as in the previous works, the link between ca-
pacity and space-time code design has not been examined. The
optimum prefilters act as a combination between beamforming on
the channel mean vector and transmit diversity coding. The design
resolves to only beamforming when the K factor of the channel is
large enough, and to only transmit diversity coding when K = 0
(i.e. Rayleigh channels).

A linear MMSE receiver is used to detect the signal. We an-
alyze a bound on the error rate performance for 4QAM uncoded
input signal. The analysis however is applicable to any rectangu-
lar QAM constellation. Both analysis and simulation results show

that we were able to extract diversity and array gains in the chan-
nel using the optimum prefilter structure above, eventhough the
MMSE is a sub-optimum receiver. The design achieves a lower
error rate with more transmit antennas or with stronger K factor
in the Rician channel, at the same average total transmit power.

The result in this paper is also applicable to MISO wireless
systems with partial channel knowledge at the transmitter, where
the channel coefficients are known with some errors. The receiver
is always assumed to know the channel perfectly.

Some notations used in this paper are: (.)T is transpose, (.)∗ is
conjugate, (.)† is conjugate transpose, ||.|| is the Euclidean norm,
||.||F is the Frobenius norm and E[.] is expectation.

2. PROBLEM SETUP

2.1. Channel model

We consider frequency flat wireless MISO channels with indepen-
dent Rician fading statistics. Let M be the number of transmit
antennas. The channel coefficient vector h = [h1 h2 . . . hM ]T

is complex Gaussian distributed with mean h0 and variance αI,
i.e. h ∼ N `

h0, αI
´
. The total power gain in the channel is nor-

malized such that
1

M
||h0||2 + α = 1 . (1)

With this normalization, K factor of the channel, which is the ratio
between power in the fixed and random components of the chan-
nel, becomes

K =
||h0||2
Mα

. (2)

When h0 = 0, the channel is Rayleigh fading with independent
identically distributed components.

This channel model also encompasses the model for partial
channel knowledge at the transmitter characterized by an estimated
coefficient vector h0 and i.i.d Gaussian estimation error with zero
mean and variance α.

2.2. Signal model

The space-time precoder structure is depicted in Fig. 1. The un-
coded input symbols x[k] is passed through the prefilters pi[k] be-
fore being sent from the transmit antennas. We assume that all the
prefilters are FIR of length L + 1. The signal transmitted from
each antenna therefore is

zi[k] =
LX

n=0

pi[n]x[k − n] , i = 1 . . . M . (3)
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Fig. 1. Space-time precoding with prefilter structure.

Let z[k] =
ˆ
z1[k] z2[k] . . . zM [k]

˜T
be the vector of signal

sent from the transmit antenna array at time k. Form the prefilter
matrix P

P =

2
6664

p1[0] p1[1] . . . p1[L]
p2[0] p2[1] . . . p2[L]
...

...
. . .

...
pM [0] pM [1] . . . pM [L]

3
7775 ,

then we have the relation

z[k] = Pxk , (4)

where xk =
ˆ
x[k] x[k − 1] · · · x[k − L]

˜T
. To keep the aver-

age total transmit power constant, we constrain the prefilter taps to
satisfy ||P||2F = 1.

The signal arriving at the receive antenna is

y[k] =
MX

i=1

hizi[k] + n[k] = hT z[k] + n[k] . (5)

In the following sections, we will drop the subscript k where ap-
propriate.

3. OPTIMUM SPACE-TIME PREFILTERS BASED ON
CHANNEL CAPACITY

3.1. Capacity achieving transmit signal characteristics

We are interested in the channel ergodic capacity, which is the
maximum average mutual information between the transmit and
receive signals E [I(z; y)], subject to an average transmit power
constraint. The capacity achieving transmit signal z is Gaussian
distributed with zero mean and a normalized covariance matrix
Rzz that is the solution of the optimization problem

C = max
Rzz

E [log(1 + ρhT Rzzh
∗)] (6)

s.t. tr(Rzz) = 1 .

Here ρ = σ2
s/N0 is the SNR, with σ2

s as average symbol power
and N0 as the noise power.

This problem with the channel model h ∼ N `
h0, αI

´
has

been solved analytically in [1]. Since we are going to make use of
this result, we recite the solution here. Let Rzz = UΛU†. The
optimum covariance matrix will have the eigenvectors U such that

the first column u1 =
h∗
0

||h0|| , and all other columns are arbitrary

except for the constraint that U is unitary. The power allocations
are

λ2 = · · · = λM =
1 − λ1

M − 1
. (7)

Let v = hT U/
√

α, then v1 ∼ N (
√

MK, 1) and vi ∼
N (0, 1) with 2 ≤ i ≤ M , where all the vi are independent. The
problem becomes finding λ1 such that

max
λ1

E [log( 1
ρα

+ λ1|v1|2 + 1−λ1
M−1

PM
i=2 |vi|2)] (8)

s.t. 0 ≤ λ1 ≤ 1 .

This is a convex optimization problem which can be solved effi-
ciently [3]. We use Newton method with the gradient and Hes-
sian approximated by Monte-Carlo simulations to find the opti-
mum value λ�

1. This optimum value is a function of the number
of transmit antennas M , SNR and K factor. The λ�

1 values can be
stored as a table lookup for use in prefilters design.

3.2. Optimum space-time prefilters

From (4), we have the normalized covariance matrix

Rzz = PE[xkx
†
k]P†/σ2

s .

Assume that the input symbols x[k] are zero mean and indepen-
dent, then E[xkx

†
k] = σ2

sI. Hence the prefilters P satisfies

PP† = Rzz . (9)

For the case of Rayleigh fading, where the channel mean h0 =
0, the optimum transmit covariance is Rzz = 1

M
I [2], and the

optimum prefilters must satisfy

PP† =
1

M
I . (10)

This is the same condition as derived by Wittneben in [4], and de-
veloped further by Wornell and Trott in [5], although the optimiza-
tion criterion in [4] was to minimize the variance of the receive
power for a single symbol. From (10), the length of each FIR has
to be at least the number of transmit antennas. The optimum pre-
filter matrix P is then a scaled unitary matrix, hence we call this
“unitary diversity”. This type of optimum prefilters includes delay
diversity [6] as a special case. Other matrices such as the DFT,
Hadamard matrices also satisfy, although they are more restricted
on dimension than delay diversity.

For Rician fading channels, since h0 �= 0, the optimum co-
variance matrix will have the form

PP† = λ2I + (λ1 − λ2)
h∗

0h
T
0

||h0||2 , (11)

i.e., a rank-one update to a scaled identity matrix. There can be dif-
ferent prefilter matrices which satisfy this condition. We propose
the following design for the prefilters

P = (
√

λ1 −√
λ2)[u1 0M×L] +

√
λ2U , (12)

where U is a unitary matrix with the first column as u1 = h∗
0/||h0||.

This scheme is a combination between beamforming, which is
the first term in (12), and unitary diversity, which is the second
term. When K factor is above a certain threshold (SNR depen-
dent) then λ2 = 0, and the scheme is beamforming, where the
prefilters become just a scalar weight vector. When K = 0 then
λ1 = λ2 = 1/M , and the scheme becomes unitary diversity. Note
that in Rayleigh fading channels, the prefilter matrix P can be any
scaled unitary matrix, but for Rician fading, the unitary portion of
P must have the first column as h∗

0/||h0||.
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4. PERFORMANCE ANALYSIS WITH MMSE RECEIVER

4.1. MMSE receiver and the optimum MSE

The space-time prefilters and the flat fading channel together act
as an effective frequency selective channel with impulse response

h[k] =

MX
i=1

hipi[k] , k = 0 . . . L . (13)

The frequency response of this effective channel is

H(ω) =
LX

k=0

h[k]e−jωk = hT Pe(ω) , (14)

where e(ω) = [1 e−jω · · · e−jLω]T .
We choose the linear MMSE receiver for simplicity and ef-

ficiency reasons. It has to be noted however, that the MMSE is
a sub-optimum receiver and hence does not operate close to the
capacity. Achieving the capacity also requires optimum channel
coding, which we do not study here. Since the prefilters design is
based on maximizing the capacity, only part of the gain promised
by the prefilters can be realized with this receiver, an effect which
shows on the error rate performance.

The ideal equalizer response is given by

Q(ω) =
ρH∗(ω)

1 + ρ|H(ω)|2 . (15)

With this equalizer, the mean square error is

ε =
1

2π

Z π

−π

σ2
s

1 + ρ|hT Pe(ω)|2 dω . (16)

4.2. Error rate performance

The error performance analysis in this section applies when the
input symbols x[k] comes from a 4QAM (or equivalently QPSK)
constellation. Based on the results in [7], which is an application of
a more general result in [8], the average symbol error probability
can be upper bounded based on the mean square error as

P̄e ≤ E
ˆ
exp

“ d2

σ2
s

− d2

ε

”˜
, (17)

where 2d is the distance between two neighboring points along a
dimension of the constellation, ε is given in (16) and the expecta-
tion is over the channel response h. In general cases, this bound
can be evaluated numerically. For the two boundary cases of uni-
tary prefilters and beamforming, more detail analytical results can
be obtained as follows.

For Rayleigh fading channels, since P is scaled unitary and the
statistics of h is unitary invariant, the upper bound on the average
symbol error probability becomes

P̄e ≤ E
ˆ
exp

“ d2

σ2
s

− d2
n 1

2π

Z π

−π

σ2
s

1 + ρ
M
|hT e(ω)|2 dω

o−1”˜
.

(18)
This upper bound is independent of the prefilters used.

For strong Rician fading channels (high K factor) where the

optimum prefilters is beamforming, then P = [
h∗
0

||h0|| 0] and the
MSE becomes

ε =
σ2

s

1 + ρ
˛̨hT h∗

0
||h0||

˛̨2 . (19)

Taking the expectation over h, the upper bound is

P̄e ≤
“ 1

η + 1

”
exp

“
−KM

`
1 − 1

η + 1

´”
, (20)

where η = d2ρα/σ2
s . As the number of transmit antennas M in-

creases, this upper bound will go to zero exponentially. The bound
also shows that the average error rate decreases with increasing K
factor or SNR (which is proportional to η). However, due to the
variation in the channel (variance α �= 0) which is present in both
K and η, the bound only decreases sub-exponentially with SNR.
As α = 0 for fixed channel, the bound becomes exp(−Mρd2/σs),
which decreases exponentially with both the number of transmit
antennas M and the SNR ρ. This agrees with the classical beam-
forming result.

5. NUMERICAL RESULTS

We perform the simulation for three different values of K factor:
K = 0 (Rayleigh fading channels), K = 0.2 and K = 3. For each
SNR and M configuration, we run blocks of 1024, 128 and 32768
symbols respectively over 20000 realizations of the channel.

For the first case of Rayleigh fading, the optimum prefilters
are unitary diversity. Using delay diversity where P = I/

√
M ,

we obtain the plots in Fig. 2. The upper bound (18) is superim-
posed on the simulation curves. The bound tracks closely the di-
versity gain in the channel but has a constant gap of around 2.4dB
compared to the actual performance. The diversity gain by mul-
tiple transmit antennas only starts to show up at SNR larger than
5dB. This gain tends to diminish with higher number of transmit
antennas, which is also observed in [5].
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Fig. 2. Average symbol error probability for Rayleigh flat fading
channels (K = 0) using delay diversity. The dotted lines are the
corresponding upper bounds in (18).

For the case of strong Rician fading with K = 3, the optimum
λ�

1 = 1 for the range of SNRs that we are interested in. Thus
beamforming on the channel mean vector is optimum. The sym-
bol error rate is plotted in Fig. 3. The result shows strong array
gain. The error rate is significantly lower than the corresponding
Rayleigh channel. This error rate is also a strong function of the
number of transmit antennas. The upper bound (20) tracks the ac-
tual performance well at low to medium SNRs (up to 15dB) at a
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constant gap of around 2dB, but tends to diverge from the actual
performance at higher SNRs.
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Fig. 3. Average symbol error probability for Rician flat fading
channels with K = 3 using beamforming. The dotted lines are the
corresponding upper bound in (20).

SNR 0dB 5dB 10dB 15dB 20dB 25dB
M = 2 0.921 0.775 0.715 0.693 0.681 0.679
M = 4 1.000 0.931 0.802 0.754 0.738 0.732

Table 1. Optimum λ�
1 for K = 0.2 Rician channels.

With K = 0.2, the optimum λ�
1 varies depending on the SNR

and number of antennas M , and is shown in Table 1. Using these
values to design the prefilters according to (12), we obtain the per-
formance curves in Fig. 4. The plot shows an improved perfor-
mance with more antennas at low SNRs (up to 10dB) compared
to delay diversity. This is due to array gain on the Rician factor
of the channel. At higher SNRs however, the error rates are sim-
ilar to that of delay diversity. This is due to MMSE being a sub-
optimum receiver, hence it does not achieve all the gain promised
by the capacity of the channel here. It must also be stressed that
these curves are for uncoded QAM symbols. With coding, which
is mandatory for operating close to capacity region, the error per-
formance is expected to improve with more transmit antennas over
delay diversity at all SNRs.

6. CONCLUSION

We have derived an optimal space-time precoding scheme for MISO
wireless channels with Rician fading statistics by using linear pre-
filters at the transmitter. The optimum prefilter design is based on
maximizing the channel ergodic capacity. Performance analysis
by error rate bounds and numerical simulations have been carried
out using MMSE receiver for 4QAM uncoded input signal. Re-
sults show that performance gain can be obtained by exploiting
the channel knowledge at the transmitter, and also by having more
transmit antennas, especially in high K factor channels.
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Fig. 4. Average symbol error probability for Rician flat fading
channels with K = 0.2 using prefilters design (12) and MMSE
receiver.
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