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Abstract

An asynchronous interference cancellation problem is ad-
dressed when training and working intervals are available
containing the desired signal and arbitrary overlapping in-
terference. A likelihood ratio (LR) maximization approach
is developed for estimation of the structured correlation ma-
trices over both training and working intervals for the Gaus-
sian data model and exploited to obtain a performance bench-
mark for ad-hoc estimators. A regularized non-iterative es-
timation of the antenna array coefficients is proposed, which
employs the autocorrelation matrix estimation as a weighted
sum of the autocorrelation matrices estimated over the train-
ing and working intervals. It is shown by means of simula-
tion in TDMA and OFDM environments that the regular-
ized semi-blind solution significantly outperforms the con-
ventional estimators and demonstrates performance close to
the LR based benchmark.

1. INTRODUCTION

Conventional space-time equalization and interference can-
cellation techniques in wireless communications exploit
known training symbols to estimate the weight vector of an
antenna array. The underlying assumption for these tech-
niques is that the training data is reliable since the co-channel
interference (CCI) overlaps with the training symbols of
the desired signal. Normally, this is the case for the syn-
chronous CCI, which has the same time-frequency struc-
ture as the desired user. Asynchronous cells, packed trans-
mission and other modern techniques lead to more compli-
cated asynchronous or intermittent CCI scenarios [1,2 and
others], where the interference may partially overlap or not
overlap with the training data of the desired signal.

It is pointed out in [1] that stationary filtering can be
exploited to enhance the desired signal and reject the asyn-
chronous CCT if information data for the signal of interest is
involved in the estimation of the weight coefficients together
with the training data. Iterative semi-blind algorithms are
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used for cancellation of the asynchronous CCI in [1,2 and
others]. Although iterative receivers may be an effective so-
lution to the considered problem, they are computationally
expensive. Availability of training and working intervals
with partially overlapping interference allows us to design
an analytical semi-blind solution, which involve data from
both training and working intervals into estimation of an-
tenna array coefficients. This simple solution can be applied
itself or as initialization for different iterative schemes.

We consider the basic narrowband scenario with train-
ing and working time intervals containing the desired sig-
nal and arbitrary overlapping CCI. We propose an estima-
tion technique based on “stochastic” likelihood ratio (LR)
optimization. The basic non-asymptotic LR optimization
technique is developed and applied to different problems in
[3 and others] . The main idea is that the local solutions
(outliers) found by some optimization procedure, which are
far away from the global LR maximum, can be found by
means of comparison with some pre-calculated threshold.
This threshold depends on the LR distribution for the actual
parameters, which does not depend on the scenario. Here
we use the LR optimization approach for estimation of the
structured correlation matrices over both training and work-
ing intervals in the asynchronous CCI scenario and propose
to exploit the developed procedure to obtain a performance
benchmark for ad-hoc estimators.

We develop a regularized non-iterative estimation of the
antenna array coefficients, which uses the autocorrelation
matrix estimation as a weighted sum of the autocorrelation
matrices averaged over the training and working intervals.
We demonstrate that this regularized semi-blind solution
significantly outperforms the conventional estimators and
demonstrates the performance close to the LR based bench-
mark according to the developed LR optimization technique.

In Section 2 we describe the data model and formulate
the problem. In Section 3 an LR based optimization tech-
nique is presented. A regularized analytical semi-blind so-
lution is presented in Section 4. The simulation results are
given in Section 5. Section 6 concludes the paper.
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2. DATA MODEL AND PROBLEM FORMULATION

We consider the following narrowband data model of the
signal received by an antenna array of K elements:

M
x(n) =hs(n) + Y gmum(n) +2(n), (1)

where n = 1...N is the time index; x(n) € CX*! is the
vector of observed outputs of an antenna array; s(n) is the
desired signal, E{|s|*} = ps, E{s(n1)s*(n2)} = 0, n; #
nga, where E{-} denotes expectation; u,,(n), m = 1... M
are the M < K — 1 components of CCI:

Pm, N1 =02 € Ny
E{um(m)uy,(n2)} =4 0,  ny=méN, , (2
07 ni ;é U]

N, is the appearance interval for the m-th interference com-
ponent, z(n) € CX*1 is the vector of noise, E{z(n)z*(n)} =
polk, E{z(n1)z*(n2)} = 0, n1 # ny and h € CE*!
and g,,, € CK>1 are the vectors modeling linear propaga-
tion channels for the desired signal and interference. All
propagation channels are assumed to be stationary over the
whole data slot and independent for different antenna ele-
ments and slots. The desired signal, noise, and all inter-
ference components are assumed to be independent circular
Gaussian processes. The training interval of N samples,
where K +1 < Ny < N, and its position inside data slot
are known at the receiver: s(n), n € N;. The working
data interval Ny of Ny = N — N samples is defined as
the rest of the slot. The interference appearance intervals
are not known at the receiver, nor are all the propagation
channels, interference or noise powers. For simplification
of Gaussian modelling we assume that the training samples
s(n), n € N are generated as i.i.d. complex Gaussian ran-
dom values. While the actual power of the useful signal py
is unknown, the power of the training signal p; is set to 1.
Note, that this modelling means that strictly speaking we
have to simulate different random-like training sequences
to accurately fit into the Gaussian assumption. In what fol-
lows for analytical derivations we accept Gaussian random-
like training signal model, while for actual simulations we
model the desired signal and CCI as independent streams of
random (£1 £ j1)/+/2 symbols. Despite this distinction,
performance of the second-order based adaptive solution is
shown to closely follow theoretical bound derived via Gaus-
sian assumptions.

Under the introduced model, the covariance matrices at
the training and working data intervals are:

M
Ri=vv'+ Z ﬁfngmg; + polk, 3)

m=1

M
Ry=vv'+ Z ﬁgngmgfn + polk, 4

m=1

where v = /psh, ﬁ}n > 0Oand ﬁgl > ( are the power coeffi-
cients depending on the appearance interval N, and actual
power p,, of each interference source. Here we assume a
midamble position of the training sequence, where the M -
component CCI always appears in the working interval, but
some of components may not appear in the training interval.
Note, that the covariance matrices (3) and (4) are the “av-
eraged” over corresponding intervals actual time-dependent
(nonstationary) covariance matrices.

For such a “stationarized” Gaussian model the optimal
linear spatial filter for recovering the desired signal s(n),
nenN d can be applied to give

$(n) = w(*)ptx(n), Wopt = Ralv. Q)

The problem is to estimate the vector Wopy using a priori
information and all the data available at the receiver in the
training and working data intervals.

3. LR MAXIMIZATION TECHNIQUE OVER THE
TRAINING AND WORKING INTERVALS

During the training interval we observe () +1)-variate inde-
pendent Gaussian training vectors X(n) = [s(n), xT(n)]T,
n € N;. Taking into account that Ny > K + 1, the sufficient
statistic at the training interval is

S — = i ﬁt f‘i[k
Rt:Ntlzx(n)x(n):[A |
nek re Ry

vi/here Pt = N{l > s(n)*s(n), ty = N{l > s(n)*x(n),
Ri = N,[f1 > x(n)x*(n) and

}, (6)

v

~ 1 *
B =) h |- C

During the working interval we observe K -variate inde-
pendent Gaussian vectors x(n), n € N and again because
of Nd > K, the sufficient statistic at the working interval is
f{d = N&l > x(n)x*(n), where E{f{d} =Ry.

Let us express the “stationarized” (over the working in-
terval) interference-only covariance matrix as f{dCCI =
Zn]\f:lﬁgngmg,*n = UnArMU?%,, where Upyr, Ay is the
eigen decomposition of the matrix f{dCCI, ie. Uy Uy =
I, Ay > 0. Therefore, Rd =vv'+Up AN UG +polx
and since ﬁ}n # 159”, we get Rt = vv* +UyBy_, Uy, +
poIK, BM—m = VM—mEM—mV}k\/[,m Z 0, where
V}k\/[_mVM,m =Iy . Ey pn >0andm (0 <m <
M) is the number of sources “missing” at the training inter-
val. The case m = M, i.e. none of the interference sources
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overlap with the training interval, corresponds to Bg = 0,
i.e. Rt = vv*+poIk. In this paper we assume that the total
number of interference sources M and the number of “miss-
ing” sources m are known or have been estimated. Then the
admissible set of the optimization parameters can be intro-
duced as follows:

~ 1 b*
At - |: b At :| > 07 (8)
A4 =bb* + Dy LyDj, + dlg >0, )

Ai=bb*+DyFy_., Dy +dlg >0, (10)

where D isa K x M matrix, Fpr—,,, isa M x M matrix
of rank M — m (again, m = M means that Fy = 0),bisa
K x 1 vector, Ly is a M x M diagonal matrix and d is a
positive scalar.

Since sufficient statistics f{t and f{d are non-degenerate
matrices, the ML estimates could be obtained via maximiza-
tion of a monotonic function of the product of the two like-
lihood ratios:

Find max W(At:Ad) (11)
At,Ad
7 = () VN g, (12)
C det(AT'Ry)exp(K + 1
Ay = CECRMELD g
exp[tr(At Ry)]
det(A7 R4 )exp(K)
Ya(Ag) = — 44— _° (14)
exp[tr(Ad Ry)]

For Monte-Carlo simulations in Section 5 the follow-
ing initialization procedure has been adopted: d = (K —
Mo RS MR b = B Dy} = [d"...d):
LY = diagil” .. .10, FY) = DI (R — ##; — dTx)D);
F —RT (FE\O},m) where /\i(Rd) are the eigenvalues

[0]

of matrix Rd in ascending order, d; " are the eigenvectors

of matrix f{d — r¢ry that correspond to the M largest non-

negative eigenvalues ZEO] and RT(F s, m) is the rank trun-
cation operation. Therefore, all the parameters in (11) - (14)
are initialized and an optimization procedure over parame-
ters b, d, D s and L can be applied with
Flil_ —RT [P[AJ} (Rt — blilplils — dU]IK) py}*,m] :
. . N=1
where PE\]/I] = (DE]V[]*DE\]/I]) DEG* and j is the current it-
eration number. When a numerical solution to (11) - (14) is
~ A-1 r

found, then wy p = A d(LR)bLR'

Naturally, any initialization and locally convergent opti-
mization algorithm cannot guarantee finding the global max-
imum of the non-convex function in (11). In this situation

it is critically important to have a technique, which allows
us to decide with some probability if the local solution is
far away from the global maximum, i.e. it can be classified
as an outlier. If the outlier is found, another initialization
can be applied or it can be just disregarded as in our case,
when we are looking for the ML benchmark for ad-hoc tech-
niques.

The LR based outliers selection technique is developed
in [3] for the “stochastic” ML problem. Here we apply
it in the considered scenario. The basic idea is that the
global maximum of the LR function is always exceeds the
LR function for the actual parameters, i.e. for the global

solutions f{t and f{d we have

N A = N:{/N
dyg(Ry) > 1RV Ndyy(Ry).

Furthermore, v¢(R¢) and 74 (R4) do not depend on R¢ and
Rg. In our case:

2 N
ymax = 1 (Re)"t/

exp(K + 1)det(Cy)

Mo = (Ry) = 2 , 19
oo exp [tr(NtACt)} NtK+1
K)det(C
o = a(Rg) = — W) g
exp [tr(Nd Cd)} Ny

where C ~ CW(Ny, K+1,Ix 1) and Cg ~ CW(Ny, K
I ) are the matrices derived from a complex-valued Wishart
distribution.

The outliers selection procedure is as follows:

- For the given values of K, Nt and Ny and “missing
target” probability p, find the threshold o from equation

Nt/Ngq . o
Prob{~, Ydo < Y0} = p~. The required distribution of

N /N
7t0 v d7d0 can be obtained analiticaly [4] or by means of

Monte-Carlo simulations as in Section 5.

- Find a local solution to the nonlinear constrained opti-
mization problem (11) using the presented initialization and
calculate the LR value for this solution 4.

- If 4 > 0, accept this solution, otherwise classify it as
an outlier.

4. SEMI-BLIND REGULARIZED SOLUTION

One known way to modify the conventional LS estimator to
take into account an additional information on a particular
problem is to consider the modified (regularized) LS crite-

rion:
= argmle x(n)* + pF(w),  (17)

where p > 0 is a regularization parameter and F'(w) is
some regularization function.
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In the considered scenario the working interval may be
affected by the interference components not presented at the
training interval. Thus, selection of the regularization func-
tion containing data from the working interval allows us to
introduce ability to cancel the asynchronous CCI.

One possibility is to use the quadratic function F'(w) =
w*Rgw — ffw — w*Ty leading to the semi-blind solution

wep = [(1— &R + 0Ry] iy, (18)

where 0 < § = p/(1 + p) < 1 s the regularization coef-
ficient. One can see that (18) contains the conventional LS
wig = Rt_ '# and the burst-based LS WISB = Ralf't as
the particular cases when § = 0 and § = 1 accordingly.
Thus, one can expect that for some intermediate value of
& estimator (18) can demonstrate ability to cancel the asyn-
chronous interference. Our goal is to use a technique de-
veloped in Section 3 and compare the ad-hoc estimator (18)
with the ML solution in the scenario presented in Section 2.

5. SIMULATION RESULTS

We simulate a four element antenna array and 2-conponet inter-
ference according to the asynchronous CCI scenario. The desired
signal and interference are simulated as independent streams of
random symbols (1 1)/+/2. All propagation channels are gen-
erated as independent complex Gaussian vectors with unit variance
and zero mean. The data slot parameters are: Ny = 20, Ny = 80.
Total signal-to-interference ratio is fixed SIR = 0 dB and variable
signal-to-noise ratio (SNR) is considered. The LR function and
MSE performance are estimated in 1000 trials for each SNR value.
A priori LR distribution for the known parameters is estimated by
means of 40000 Monte-Carlo trials according to equations (15),
(16). The threshold ~o is calculated for p, = 102 The standard
MATLAB optimization routine “fmincon” is used for LR maxi-
mization. The MSE performance is estimated for the LS, LSB,
and SB estimators over all trials and for the LR based solution
over the selected and disregarded trials separately. The regulariza-
tion coefficient in SB is roughly selected to get the best results.

An a priori LR distribution together with the LR functions be-
fore and after optimization are presented in Fig. 1 for variable
SNR. Comparison of the initialization and maximization curves
shows that effective optimization is applied here because in the
most cases the LR values after optimization become higher than
the LR values for the actual parameters (a priori distribution). One
can see the efficiency of the proposed procedure for outliers find-
ing: the selected trials have significantly lower MSE compared to
the outliers, e.g. more than 10 times lower for SNR =20 dB.

The MSE performance is presented in Fig. 2. in the same
scenario. The main conclusion is that the regularized SB algorithm
significantly outperforms the conventional LS and LSB estimators
and demonstrates the results close to the ML solution.

6. CONCLUSION

An asynchronous interference cancellation problem has been con-
sidered. The potential efficiency was studied for the Gaussian data

model. An LR maximization approach for estimation of the struc-
tured correlation matrices over both training and working inter-
vals was developed. A regularized second-order estimation of the
antenna array coefficients has been proposed. It was shown by
means of simulation in a TDMA environment that the regularized
semi-blind solution significantly outperforms the conventional es-
timators and demonstrates the performance close to the LR-based
benchmark.
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