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ABSTRACT

We investigate the information regularity and identifiabil-
ity of the blind source separation problem with constant
modulus constraints on the sources. We demonstrate that
the information regularity (existence of a finite Cramér-Rao
bound) is closely related to local identifiability. Sufficient
and necessary conditions for local identifiability are derived.
We also study the conditions under which unique (global)
identifiability is guaranteed within the inherently unresolv-
able ambiguities on phase rotation and source permutation.
Both sufficient and necessary conditions are obtained.

1. INTRODUCTION

One of the most widely used blind source separation (BSS)
algorithms is the constant modulus algorithm (CMA) [7, 1,
9]. While extensive literature exists on the CMA and vari-
ous uses of the CM criterion (see e.g., [3] and the references
therein), identifiability issues have not been resolved fully.

Closely related to identifiability is the regularity of the
Fisher information matrix (FIM). Cramér-Rao bound (CRB)
has been widely used to investigate the performance limit
of unbiased parameter estimators. Since the existence of a
useful CRB depends on the regularity of the FIM, it is also
of interest to study the conditions of information regularity.

In this paper, we will investigate the existence of a finite
CRB for the BSS problem under CM constraints. The link
between information regularity (a.k.a. existence of CRB)
and local identifiability will be established, and the condi-
tions for local identifiability will be derived. The issue of
global identifiability for the BSS problem under CM con-
straints will also be studied. We will derive a sufficient and
necessary condition for this problem to be globally identifi-
able up to a phase rotation and source permutation ambigu-
ity, both of which are inherently unresolvable by any blind
algorithm. Due to the space constraint, all proofs in this
paper have been omitted, but can be found in [11].

This work was supported by the ARL/CTA grant no. DAAD19-01-2-
0011.

Notation: Upper and lower case bold symbols will be
used to denote matrices and column vectors, respectively;
(·)∗ will denote conjugation; (·)H Hermitian transpose; (·)T

transpose; IN will stand for the N × N identity matrix; x̄

and x̃ will denote the real and imaginary parts of x, respec-
tively; finally, diag(x) will denote a diagonal matrix whose
diagonal elements are the entries of the vector x.

2. PROBLEM FORMULATION

Consider the following input-output matrix-vector model:

x(i) = Hb(i) + w(i), (1)

where H is an N × K mixing matrix, x(i) is the received
vector in the ith symbol interval, and b(i) and w(i) are
the source symbol vector and the noise vector, respectively.
Equation (1) appears in many problems related to wireless
communications and signal processing, e.g., multi-input
multi-output (MIMO) systems and direct-sequence code-
division multiple access (DS-CDMA) systems.

In this paper, we will assume that the mixing matrix
H is of full column rank, the additive noise w(i) is zero-
mean, white Gaussian with covariance matrix σ2IN , and
the source symbols have constant modulus, namely, b(i) :=
[b1(i), . . . , bK(i)]T satisfies |bk(i)| = 1 for k = 1, . . . , K.

3. INFORMATION REGULARITY

The Cramér-Rao lower bound benchmarks the covariance
of unbiased estimators of unknown parameters. The nonex-
istence of a finite CRB often signifies the lack of identifia-
bility of a particular parameter estimation problem. Thus, it
is of interest to investigate the existence of a finite CRB for
the BSS problem.

3.1. CRB for BSS under CM Constraints

We will first compute the CRB of estimators Ĥ, b̂(i) in the
BSS model (1) under CM constraints. Since a small amount
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of training data is needed to resolve the inherent phase am-
biguity of the CM constraint, we will assume that a suffi-
cient number of (say the first T ) symbols of every source
bk(i) is known.

3.1.1. A Constrained CRB Formulation

To derive the CRB under CM constraints, we will rely on
the constrained CRB expression of [8]. Compared to the
traditional method using reparameterization, this approach
is more convenient and provides more insight to the effects
of the constraints.

Let y be the vector of observations and θ ∈ R
n be the

n × 1 real parameter vector to be estimated. For a set of k

(k < n) constraints f(θ) = 0, define the gradient matrix of
the constraints as

F(θ) =
∂f(θ)

∂θ
T

. (2)

Assume that F(θ) has full row rank for θ in the constrained
parameter space (rank deficiency of F(θ) usually indicates
that certain constraints are redundant, and can be eliminated).
Let U(θ) be the n × (n − k) matrix whose columns form
an orthonormal basis for the null space of F(θ) and denote
the unconstrained FIM as Jθ. If UT JθU is nonsingular, then
any unbiased estimator θ̂ must satisfy

E{(θ̂ − θ)(θ̂ − θ)T } ≥ U(UT JθU)−1UT . (3)

A finite CRB for the constrained parameter estimation exists
if and only if |UT JθU| �= 0 [8].

3.1.2. Constrained CRB for BSS

Given M observed vectors X = {x(0), . . . , x(M − 1)}, the
likelihood function is

p(X;θ) =

M−1∏
i=0

1

(πσ2)N
exp

[
−

1

σ2
|x(i) − Hb(i)|2

]
, (4)

where θ := [h̄
T

0 , h̃
T

0 , . . . , h̄
T

N−1, h̃
T

N−1, b̄
T
(0), b̃

T
(0), . . . ,

b̄
T
(M − 1), b̃

T
(M − 1)]T is the set of parameters to be

estimated (expressed in terms of their real and imaginary
parts), and we have denoted the nth row of H as hT

i . The
unconstrained FIM for this problem can be shown to be:

J =
2

σ2

(
J11 J12

JT
12 J22

)
, (5)

where

J12 :=

⎛
⎝ M0,0 · · · M0,M−1

. . . . . . . . . . . . . . . . . . . . . . . . . . .
MN−1,0 · · · MN−1,M−1

⎞
⎠ , (6)

with

Mn,i :=

⎛
⎝ Re

[
b(i)hH

n

]
Im

[
b(i)hH

n

]
−Im

[
b(i)hH

n

]
Re

[
b(i)hH

n

]
⎞
⎠ ; (7)

J11 and J22 are block diagonal matrices, whose diagonals
consist of N copies of

A :=

(
Re

[
BBH

]
Im

[
BBH

]
−Im

[
BBH

]
Re

[
BBH

]
)

, (8)

and M copies of

D :=

(
Re

[
HHH

]
−Im

[
HHH

]
Im

[
HHH

]
Re

[
HHH

]
)

, (9)

respectively, where

B :=

⎛
⎜⎝

b1(0) · · · b1(M − 1)
...

. . .
...

bK(0) · · · bK(M − 1)

⎞
⎟⎠ . (10)

Under the assumption that the sources are CM with am-
plitude 1 and the first T symbols are known, the parameter
set θ should satisfy the following set of constraint equa-
tions:

b̄k(i) − b̄ki = 0, i = 0, . . . , T − 1, (11)

b̃k(i) − b̃ki = 0, i = 0, . . . , T − 1, (12)

b̄2
k(i) + b̃2

k(i) = 1, i = T, . . . , M − 1, (13)

where k = 1, . . . , K. The gradient matrix for these con-
straints is an (M + T )K × (2N + 2M)K matrix:

F(θ) =

⎛
⎜⎜⎜⎜⎜⎝

I2TK

BT

Fh BT+1

. . .
BM−1

⎞
⎟⎟⎟⎟⎟⎠

,

(14)
where Fh := 0(M + T )K × 2NK, Bi := 2[diag(b̄(i)),
diag(b̃(i))], and the empty spaces indicate that the corre-
sponding matrix entries are zero. From (14), the matrix
U(θ), and subsequently the constrained CRB can then be
obtained straightforwardly.

Next, we proceed to link local identifiability with infor-
mation regularity using Equations (4)–(14).

3.2. Local Identifiability and Information Regularity

The regularity (invertibility) of the Fisher information ma-
trix is related to parameter identifiability. To investigate the
link between them in the BSS context, we first introduce
several relevant definitions [5]:
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Definition 1. Suppose a family of probability measures
{F (·, θ), θ ∈ Θ} on a measurable space (Ω,F) is domi-
nated by a σ-finite measure µ1. Two parameter values θ0

and θ1 are said to be observationally equivalent if

dF (x, θ0)

dµ
=

dF (x, θ1)

dµ
a.e.[µ]. (15)

Definition 1 basically means that two parameter values
can be seen as equivalent if the probability densities indexed
by them are the same except on a set of measure 0.

Definition 2. Suppose the family {F (·, θ), θ ∈ Θ} is domi-
nated by a σ-finite measure µ. A parameter value θ0 ∈ Θ is
said to be locally identifiable if there exists an open neigh-
borhood of θ0 containing no other θ ∈ Θ that is observa-
tionally equivalent to θ0; it is said to be (globally) identi-
fiable if there exists no other θ ∈ Θ that is observationally
equivalent to θ0.

Due to the permutation ambiguity present in the BSS
problem, {H, b(i), i = 1, . . . , M} is not globally identifi-
able, in general. In this subsection, we will focus on local
identifiability. The link between the local identifiability and
the information regularity is given by the following theo-
rem [6]:

Theorem 1. Assume that: i) the unconstrained parameter
space A is an open set in R

n; ii) the likelihood function p

is nonnegative and the equation
∫

p(y|θ)dy = 1 holds for
all θ ∈ A; iii) the support of p is the same for all θ ∈ A;
iv) p is smooth in θ; v) the elements of the unconstrained
FIM J(θ) exist and are continuous functions of θ every-
where in A; and vi) θ satisfies a set of constraint equations
fi(θ) = 0, i = 1, . . . , k, where each fi possesses contin-
uous partial derivatives. If A′ denotes the constrained pa-
rameter space, and both F(θ) and V(θ) = [JT (θ), FT (θ)]
do not change ranks in an open neighborhood of θ0 ∈ A′,
then θ0 is locally identifiable if and only if V(θ) has full
rank at θ = θ0.

Note that, the constant rank assumption of F and V is
needed for establishing the necessity, but not the sufficiency.
Recall that a sufficient and necessary condition for the con-
strained CRB to exist is |UT JU| �= 0. It can be shown that
this condition is equivalent to the condition that V has full
rank:

Lemma 1. If F(θ0) has full column rank, then V(θ0) has
full rank if and only if UT (θ0)J(θ0)U(θ0) has full rank,
where U(θ0) is a matrix whose columns form an orthonor-
mal basis of the null space of F(θ0).

1A measure µ1 is said to be dominated by µ0, if µ0(F ) = 0 implies
that µ1(F ) = 0, where F ∈ F .

Checking (4) –(14), we can verified that conditions (i)–
(vi) of Theorem 1 are satisfied. So, the existence of a finite
constrained CRB indicates local identifiability. It can also
be shown that both F(θ) and J(θ) have constant ranks in
a neighborhood of θ, if θ is in the constrained parameter
space, the entries of B are independently chosen, and M

goes to ∞. So, we expect that, in most cases, V(θ) will not
change rank around θ and local identifiability will lead to
information regularity.

3.3. Conditions of Local Identifiability

From (4), we can see that a set of parameters θ is not lo-
cally identifiable if and only if given any ε > 0, there exists
another set of parameters θ

′ such that θ
′ belongs to the con-

strained parameter space, ‖θ − θ
′‖ < ε, and

HB = H′B′. (16)

With this fact, we can obtain the following result:

Theorem 2. Assume that: i) the data symbols of differ-
ent sources are independent; ii) the kth source’s symbols
bk(i), i = 0, . . . , M − 1 are independent and identically
distributed (i.i.d.) random variables drawn from the CM
constellation Ak such that |bk(i)| = 1 and E[bk(i)] = 0;
iii) the mixing matrix H has full column rank; and iv) at
most one source has binary antipodal constellation. Then,
the true parameter set [H, B] is locally identifiable (with
probability 1, as M → ∞), if and only if at least one data
symbol from each source is known (i.e., the only local am-
biguity is the phase ambiguity).

When all sources have binary antipodal modulations,
more training symbols are needed to ensure local identifi-
ability:

Theorem 3. Assume that all sources use binary antipodal
constellations, data symbols from different sources and in
different time slots are independent from each other, the
first T symbols of all sources, [b1(m), . . . , bK(m)],m =
0, . . . , T −1, are known, and H has full column rank. Then,
the true parameter set {H, B} is locally identifiable (with
probability 1, as M → ∞) if and only if no two rows of the
matrix BT are dependent, where

BT =

⎛
⎜⎝

b1(0) · · · b1(T − 1)
...

. . .
...

bK(0) · · · bK(T − 1)

⎞
⎟⎠ . (17)

Remark: From Theorem 3, the minimum number of train-
ing symbols needed for each source is Tmin = �log2 K�+1.
To see this, first note that we can assume without loss of
generality that b1(0) = · · · = bK(0) = 1. If T ≥ Tmin,
then we can let each of b′k := [bk(1), . . . , bk(T − 1)]T
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(k = 1, . . . , K) take one distinct value among all 2T−1

(T − 1)-vectors with ±1 entries. Apparently, no two rows
of the resulting matrix are dependent. If, on the other hand,
T < Tmin, then there exist k1 and k2, such that b′k1

= b′k2

and row k1 and row k2 are dependent.

4. UNIQUE IDENTIFIABILITY

A definition of identifiability that is particularly relevant to
the BSS problem with CM constraints is the global (unique)
identifiability that is defined as follows [10]:

Definition 3. BSS problem under CM constraints is uniquely
identifiable, if any set of parameters θ

′ that is observation-
ally equivalent to the true parameter set θ satisfies

H′ = HT−1, (18)

and
B′ = TB, (19)

where T is an admissible transformation, that is,
T = diag(α1, · · · , αK)P, in which P is a permutation ma-
trix, and |αk| = 1,∀k = 1, . . . , K.

In [10], it is shown that for CM signals, if the num-
ber of observed samples is large enough and if the signals
are rich in phase, then these signals are uniquely identifi-
able. More recently, necessary and sufficient conditions for
unique identifiability were obtained in [2] using Kruskal’s
permutation lemma. Both the phase richness condition
of [10], as well as the one in [2] are difficult to verify.
In [4], persistently exciting sources were shown to guaran-
tee unique identifiability, and a lower bound of the finite
sample identifiability was given for i.i.d. circularly sym-
metric CM sources.

We investigate the unique identifiability of the blind
source separation problem where the sources have arbitrary
finite CM constellations, and obtain a necessary and suffi-
cient condition for unique identifiability that is easy to ver-
ify. More specifically, we have proved that:

Theorem 4. If the data symbols from the kth CM source
belong to the alphabet set Ak, and the probability assigned
to each vector of A1 × · · · × AK is nonzero, then when the
number of observed samples is large enough, the transmit-
ted data and the mixing matrix can be uniquely identified if
and only if at most one alphabet set is binary and antipodal.

5. CONCLUSIONS

In this paper, we investigated the information regularity,
local identifiability, and unique identifiability of the BSS
problem under CM constraints. We established the link be-
tween the information regularity and the local identifiabil-
ity in the BSS context. Sufficient and necessary conditions

for local identifiability (and hence information regularity)
were derived. We also studied the unique identifiability of
blindly separating multiple CM sources with finite alphabet.
Sufficient and necessary conditions for unique identifiabil-
ity were obtained.
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