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ABSTRACT

A modification to the Algebraic Constant Modulus (ACM) algo-
rithm is proposed that exploits the presence of known pilot sym-
bols within the transmitted data. The pilot symbols are used to
place soft constraints on the subspace in which the ACM solution
should lie, and relax some of the identifiability conditions required
by ACM. The primary advantage of the proposed method is that
sources transmitting linearly independent pilot data can be sepa-
rated without resorting to a joint diagonalization procedure, and
hence without computing the beamformers of signals that are not
of interest.

1. INTRODUCTION

The Algebraic (or sometimes “Analytic”) Constant Modu-
lus (ACM) algorithm [1] provides a closed-form solution to
the problem of blindly separating multiple constant modu-
lus (CM) signals. The algorithm finds a set of linear com-
biners or “beamformers” for all of the CM signals (both
desired and interference) that are present in the received
data. It is implemented in two steps: First, a least-squares
problem is solved in which the quadratic CM constraints
are relaxed in order to obtain the estimate of a particular
subspace, and second, the CM constraints are applied via
a joint-diagonalization procedure performed on the vectors
that span the subspace estimate. The excellent performance
of ACM has been documented using both analytical per-
formance evaluations [2, 3, 4] and studies involving experi-
mental data [5].

This paper presents an extension to the ACM approach
that allows the receiver to exploit knowledge of pilot or
training symbols embedded in at least one of the transmit-
ted signals. This information is used to define a subspace
orthogonal to that in which the desired beamformer must
lie, which in turn is used to augment the number of equa-
tions used in the ACM least-squares problem. Assuming

no other source employs the same pilot signal at the same
time, a single solution results that separates the desired sig-
nal from the other CM signals without the need for finding
beamformers for all of the other sources via joint diagonal-
ization. In situations where only one of the received signals
is of interest, ACM estimates the waveforms of all of the
CM signals that are present, and must employ additional in-
formation (e.g., pilot data) to determine which of the signals
corresponds to the desired source. The approach we present
takes advantage of information about the pilot data from the
beginning, and uses it simultaneously with the CM assump-
tion to find the beamformer of the desired signal directly.
The new algorithm is similar in spirit to previous extensions
of ACM that exploit structure in the data due to channel
memory [6] or space-time block coding [7].

2. ALGEBRAIC CONSTANT MODULUS
ALGORITHM

Consider an array of M antennas that collects N samples of
D CM signals:

X = HS ,

where X is M × N and contains the array outputs, H is
M × D and represents the unknown channel, and S is D ×
N and holds the CM signal samples (the presence of noise
is neglected for the moment). The rows of S are denoted
by sT

k , k = 1, · · · , D, and the elements in these rows are
assumed without loss of generality to have unit modulus:
|sk(i)|2 = 1 for i = 1, · · · , N . Denote the “economy”
singular value decomposition (SVD) of X as follows:

X = UΣV∗ ,

where (·)∗ denotes the complex conjugate transpose and V
is N × D. Note that in the noiseless case,

row span(X) = row span(V∗) = row span(S) .
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The goal of the ACM algorithm is to exploit the CM
property to find a set of zero-forcing beamformers, wk, that
recover each of the signals:

w∗
kV

∗ = sT
k , (1)

where (·)∗ denotes the complex conjugate transpose. As
such, the algorithm requires M ≥ D. Combining (1) to-
gether with the CM constraint yields the following set of
equations (dropping the subscript k for simplicity):

w∗vnv∗
nw = (v̄n ⊗ vn)∗ (w̄ ⊗ w) = 1 , n = 1, · · · , N,

(2)
where vn is the nth column of V∗, (̄·) denotes the complex
conjugate and ⊗ the Kronecker product. Stacking all such
N equations together yields⎡

⎢⎣
(v̄1 ⊗ v1)

∗

...
(v̄N ⊗ vN )∗

⎤
⎥⎦ (w̄ ⊗ w) def= A (w̄ ⊗ w) = 1N , (3)

where 1N is an N × 1 vector of ones. Provided that N >
D2, equation (3) will have D solutions, each of which cor-
responds to the beamformer for one of the signals.

In the presence of noise, the ACM algorithm uses the
properties described above in the following three-step pro-
cedure:

1. Calculate the SVD of X, and define V to be the D
right singular vectors with largest singular values.

2. Form the matrix [A −1N ], and estimate its nullspace
by the D right singular vectors with smallest singular
values.

3. Form a D × D matrix from each column of the esti-
mated nullspace by inverse column stacking (ignore
the last element of each vector), and perform a joint
diagonalization of the matrices to calculate the beam-
formers.

As mentioned earlier, ACM simultaneously provides beam-
formers for all D signals, whether they correspond to de-
sired signals or not. At this point, some method must be
used to determine which of the solutions correspond to the
signal(s) of interest. For example, the estimated signals
sk, k = 1, · · · , D, could be compared against some known
samples of the desired source, and the one “closest” to those
samples would then be chosen as the estimate of the desired
signal. In the next section, a method is presented that takes
advantage of such information from the beginning.

3. SEMI-BLIND ACM

Suppose that T samples of one of the CM signals, say s1,
are known at the receiver. Denote the vector of known sam-
ples as

t1 = [s1(i1) · · · s1(iT )] , (4)

where i1, · · · , iT are the indices of s1 at which these sam-
ples occur. Collect the T columns of V∗ that correspond to
these sample times into a new matrix V∗

1:

V∗
1 = [vi1 · · · viT

] , (5)

so that, in the noiseless case, V1w1 = t∗1, and hence

P⊥
t∗1

V1w1
def= Q1w1 = 0 , (6)

where P⊥
t∗1

= I − t∗1 (t1t∗1)
−1 t1, and it is assumed that

T > 1.
Equation (6) provides T additional equations that can be

used to augment those already available in (3) from the CM
assumption. To see this, write the T columns of Q∗

1 as

Q∗
1 = [q1 · · · qT ] ,

so that⎡
⎢⎣

(q̄1 ⊗ q1)
∗

...
(q̄T ⊗ qT )∗

⎤
⎥⎦ (w̄1 ⊗ w1)

def= A1 (w̄1 ⊗ w1) = 0T ,

(7)
where 0T is a T -element vector of zeros. Combining (7)
with (3) yields the following equation for w1:

[
A −1N

αA1 0T

] [
w̄1 ⊗ w1

1

]
def= Ã

[
w̄1 ⊗ w1

1

]
(8)

= 0N+T . (9)

The scaling α ∈ IR can be used to weight the importance of
the pilot data relative to the CM assumption. As long as no
other signal employs the same pilot data, w1 can be almost
uniquely determined from (8). “Almost uniquely” refers to
the fact that (8) only defines w1 to within some arbitrary
phase factor ejφ. If w denotes any solution to (8), φ can
simply be found by solving

ejφV1w = t∗1 . (10)

The uniqueness of the above solution is reflected by the fact
that Ã will have only one zero singular value. The first D2

elements of the corresponding singular vector will be pro-
portional to w̄1 ⊗ w1, and if a D × D matrix is formed
from these elements by inverse column stacking, it will be
proportional to the rank-one matrix W1 = w1w∗

1 . This ob-
servation is used in the algorithm description given below.

The relationships derived above suggest the following
Semi-Blind ACM (SB-ACM) algorithm when the data is
observed in the presence of noise:

1. Calculate the SVD of X, define V to be the D right
singular vectors with largest singular values, and form
V1 as in (5).
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2. Construct Ã as in (3)-(8) using α,V,V1, and P⊥
t∗1

,

and find the right singular vector of Ã corresponding
to the smallest singular value.

3. Form a D×D matrix W1 from the first D2 elements
of this vector by inverse column stacking, and find
the left (or right) singular vector of W1 + W∗

1 corre-
sponding to the largest singular value. Call this sin-
gular vector ŵ.

4. Estimate the phase factor φ using:

φ̂ = ∠
(

ŵ∗t1

ŵ∗V∗
1V1ŵ

)
. (11)

5. Set ŵ1 = ejφ̂ŵ.

In Step 3, the matrix W1 + W∗
1 is calculated since, when

noise is present, W1 will in general not be Hermitian.
The presence of the pilot data provides T equations be-

yond the N available due to the CM assumption, so the up-
per bound on the number of separable sources is relaxed to
D2 < N + T . Also, unlike other semi-blind methods or
algorithms that use pilot data only, the above approach is
able to exploit the availability of known symbols even when
T < D. Although the computation involved in Step 2 is
slightly greater than the corresponding step in the standard
ACM algorithm (since Ã is larger than A), the overall sim-
plicity of the algorithm is improved since no joint diago-
nalization step is required, and only the beamformer for the
signal of interest is computed. A simple simulation example
is given in the next section to illustrate the performance of
the above algorithm.

4. A SIMULATION EXAMPLE

In this example, a single desired QPSK source was simu-
lated in the presence of four non-CM interferers and spa-
tially white noise. The receiver was assumed to have M = 8
antennas, and the 8× 5 channel matrix H was composed of
independent identically distributed elements. The interfer-
ence, noise and channel samples were all generated as zero-
mean complex circular Gaussian random variables. Each
block of data was of length 40 + T , the first T symbols of
the desired signal were assumed to be known at the receiver,
while the remaining 40 were unknown. The desired signal
and the interferers each had the same power level, which
was 15dB higher than that of the additive noise. A total of
100, 000 independent Monte Carlo trials were conducted,
each trial with a new realization of the channel, signals and
noise. Equation (11) was employed to estimate the proper
phase rotation required in order to make symbol decisions
using the blind ACM solution. In addition to ACM and
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Fig. 1. Symbol Error Rate vs. Number of Pilot Symbols for

N = 40, M = 8, 15dB SNR, 4 interfering 15dB Gaussian

sources, Rayleigh fading channel.

SB-ACM, results were tabulated for a simple least-squares
beamformer based only on the pilot data:

ŵLS = (V∗
1V1)

−1 V∗
1t

∗
1 . (12)

This approach will only produce a meaningful estimate when
T ≥ 5. In this example, SB-ACM was implemented with
no weighting (α = 1).

Figure 1 shows the resulting symbol error rate of the
three algorithms as T is varied from 2 to 15. In this exam-
ple, using T ≥ 9 pilot symbols as in (12) provides better
performance than exploiting the CM assumption over the
entire 40 + T sample block. However, the SB-ACM ap-
proach provides the best performance since it uses knowl-
edge of both the pilot data and the CM property.

5. CONCLUSIONS

An generalization of the Algebraic Constant Modulus algo-
rithm has been presented that incorporates information from
known pilot symbols embedded in the data. Provided that
a given source transmits a unique pilot sequence, it can be
separated from interfering sources (CM or otherwise) using
a procedure similar to that of the standard ACM algorithm,
but without the need for a joint diagonalization step. Only
the beamformer for the desired signal, and not the interfer-
ers, is computed. The addition of the pilot data also reduces
the lower bound on the size of the data block required to
achieve source separation. The relative performance of the
new algorithm is best in scenarios where only a few pilot
symbols are present, or when the size of the overall data
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block is small; situations where exploiting only the pilot
data or the CM assumption alone yield poor or marginal
performance.

6. ACKNOWLEDGEMENTS

This work was supported by the National Science Founda-
tion under Information Technology Research Grants CCR-
0081476 and CCR-0313056.

7. REFERENCES

[1] A. van der Veen and A. Paulraj, “An Analytical Con-
stant Modulus Algorithm”, IEEE Trans. Sig. Proc., vol.
44, no. 5, pp. 1136–1157, May 1996.

[2] A. van der Veen, “Asymptotic Properties of the
Algebraic Constant Modulus Algorithm”, IEEE
Trans. Sig. Proc., vol. 49, no. 8, pp. 1796–1807, Au-
gust 2001.

[3] A. van der Veen, “Statistical Performance Analysis
of the Algebraic Constant Modulus Algorithm”, IEEE
Trans. Sig. Proc., vol. 50, no. 12, pp. 3083–3097, De-
cember 2002.

[4] B. Sadler, R. Kozick, and T. Moore, “On the Perfor-
mance of Source Separation with Constant Modulus
Signals”, in Proc. ICASSP, Orlando, FL, 2002.

[5] A. Swindlehurst, M. Goris, and B. Ottersten, “Some
Experiments with Array Data Collected in Actual Ur-
ban and Suburban Environments”, in Proc. SPAWC
Workshop, Paris, France, 1997, pp. 301–304.

[6] A. van der Veen and A. Trindade, “Combining Blind
Equalization with Constant Modulus Properties”, in
Proc. 34th Asilomar Conf. on Signals, Systems, and
Computers, 2000, vol. 2, pp. 1568–1572.

[7] A. Swindlehurst, “Blind Separation of Space-Time
Block Coded Signals via the Analytic Constant Mod-
ulus Algorithm”, in Proc. IEEE Sensor Array & Multi-
channel Proc. Workshop, Washington, DC, 2002.

IV - 448

➡ ➠


