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ABSTRACT

We describe a family of criteria dedicated to blind SISO equal-
izers. These criteria are based on Alphabet Polynomial Fitting
(APF), and remind the well-known Constant Modulus Algorithm
(CMA) criterion, and encompass the Constant Power Algorithm
(CPA) criterion. Algorithms based on several polynomial criteria
have been implemented in block form (including CPA and APF),
as well as the CMA and the Kurtosis Maximization (KMA). Block
implementations are indeed more efficient for short data records,
and allow the direct computation of the optimal step size in a gra-
dient descent, as shown in the paper. Computational complexities
of APF, KMA and CMA are eventually compared, as well as their
performances for various digitally modulated inputs.

1. INTRODUCTION

Blind equalization schemes have been the subject of intense inter-
est since the work of Sato [9] and Godard [7]. One of the main
advantages of blind techniques is that training sequences are not
required. By deleting pilot sequences, one can thus increase the
transmission rate.

Our paper is dedicated to Single-Input Single-Output (SISO)
equalizers. This is not restrictive, i.e. the same criteria can be
used with MIMO channels, since sources can be extracted one by
one with a deflation approach [5][11]; this also allows to write a
descent algorithm as a fixed point search [1].

This paper is organized as follows. In section 2, we introduce
the SISO blind equalization problem; model and notations are also
included. Then, in section 3, we describe the family of criteria
based on Alphabet Polynomial Fitting (APF); assumptions and def-
inition of contrast criteria are also given in this section. Practical
algorithms, using an optimal step size gradient descent, are imple-
mented in section 4. Finally, comparisons of computational com-
plexities and performances of APF, Kurtosis Maximization (KMA)
[10] and Constant Modulus Algorithm (CMA) [11] are presented
in section 5.

2. MODEL AND NOTATIONS

Throughout the paper, (") stands for transposition, (") for conju-
gate transposition, (*) for complex conjugation, and 7 = /—1.
Vectors and matrices are denoted with bold lowercase and bold
uppercase letters respectively, I stands for identity matrix. More-
over, let H be a set of filters, S the set of processes and 7 the
subset of H of trivial filters [2].

In the field of digital communications, we consider the follow-
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ing baseband SISO observation model:

K

y(n) = Z ckxr(n —k+ 1)+ pw(n) (1)
k=1

where z(n) denotes the useful unknown sequence, ¢y the chan-
nel impulse response, y(n) the received sequence, w(n) the unit
variance additive noise and p a parameter introduced in order to
control the Signal to Noise Ratio. The blind equalization problem
consists of finding a LTI filter, f = [f1,..., fr]", in order to re-
trieve the input sequence solely from the observation of the output
sequence of the unknown LTI channel ¢ = [e1, . .., ck]". In other
words, we search f;, with 1 <[ < L, such that

L
2(n) =Y fiyln—1+1) )
=1

yields a good estimate of the input sequence z(n). The signal
recovered can be delayed by a filter A, so that ¢ x f = A, where x
is the convolution operator. When A is of the form

A=[0,...,0,)\ 0,...,0]" 3)
N e’ N —
p—1 L+K—1—p

then it belongs to the set of trivial filters [2], i.e. A € 7.

3. POLYNOMIAL CRITERIA

The main assumption in blind equalization is the independence
between successive symbols. Thus, we consider the following hy-
potheses:

Hypothesis H1: Source x(n) is a zero-mean random process, with
unit variance.

Hypothesis H2: Source z:(n) belongs to a known finite alphabet
A characterized by the d distinct complex roots of a polynomial
Qz) =0.

For instance, a discrete PSK-q input is characterized by roots of
Q(x) = % — 1. Table 1 gives polynomials Q(x) for PSK-q and
QAM16 modulations.

Hypothesis H3: Source x:(n) is stationary up to order r,v > q —
1: the order-r marginal cumulants,

Cp(z(n)) = Cum{xz(n),...,z(n),z"(n),...

P s=r—p
do not depend on n.

Moreover, for PSK-g modulations, elements of the complex
constellation satisfy x? = 1. As a consequence, F{z?} = 1 but
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Modulation A Q(z)
BPSK {£1} z? -1
PSK-q {9} |reo.....q-1 29— 1
QAMI16 {£1, 43}, {2+, £39} | Sp_p anz™”

ao = 5625/256, a1 = 12529/16, az = —221/8,
as = 17,a4 = 1.

Table 1. Polynomials characterizing PSK-q and QAM16.

E{z™} = 0,Vm < q. We shall say that z is circular up to order
q — 1, but non circular at order q.

Now, let us remind the definition of contrast criteria:
Definition 1: An optimization criterion, J(f; z), is referred to as

a contrast, defined on H X H - S, if it enjoys the three properties
below [2]:

P1. Invariance: The contrast should not change within the set of
acceptable solutions, which means thatVz € H-S,Vf € T
then J(f;z) = J(I;2).

P2. Domination: If sources are already equalized, any filter
should decrease the contrast. In other words, Vz € S,

Vf € H, then J(f;z) < J(I;2).

P3. Discrimination: The maximum contrast should be reached
only for filters linked to each other via trivial filters: Yz &€
S, J(f;2)=JI;2)= feT.

Considering discrete inputs and SISO channel, one can blindly
equalize it thanks to the polynomial criterion below:
Theorem 1: The criterion

Jarr(f,2) == |Q(z(n))[? Q)

is a contrast under hypotheses H2 and H3.

The proof of the theorem needs the following lemma:
Lemma 2: Let A = {z,,1 < n < N} be a given finite set of
complex numbers not reduced to {0}, and {c,1 < k < K}
non zero complex coefficients. Then, if 25:1 CkTo(k) € A,
Sor all mappings o, not necessarily injective, from {1,..., K} to
{1,..., N}, only one component cy, is non zero.

The proof of lemma 1 is rather long [4] and is not given due to
lack of space. In a few words, ¢ is shown to be trivial. The idea is
to prove that a non trivial vector ¢ generates symbols that may lie
outside the convex hull of alphabet A.

Now, let us prove that Japr enjoys the three properties of a
contrast:

Proof.
Property PI: for any trivial filter A € 7, we have
—Japr(A;2) = Y, 1Qz(n + 7)) with 7 € Z,

A € C. Because of the sums, this can also be simply writ-
ten as —Japr(A;2) = Y., |Q(Az(m))[>. If 2 is in S, then
z(m) belongs to A, and so is Az(m). Thus Q(Az(m)) = 0.

Property P2: since Y. |Q(y(n))|* > 0, Japr is larger
than or equal to Y |Q(z(n))|*, because the latter is null when
z(n) € S. We have indeed —Japr(f;z) > —Japr (L, z).

Property P3: we must show that if we have the equal-
ity >, 1Q(y(n)|> = 0, then X is trivial. Denote
y(n) = 3, ckx(n — k), with 2(n) € A, and where c;, define
the kth component of filter ¢. Then we have Vn, Q(y(n)) = 0.
We thus have that Q(>", ckz(n — k)) = 0. We are under the
conditions of lemma 2, and we may conclude that a single cj, is
non zero. In addition, this ¢y is necessarily in C since cxz must
be in A for any z € A. By proceeding in the same way for every
y(n), we end up with an impulse response ¢ having only one non
zZero entry. &

Criterion (5), also named Alphabet Polynomial Fitting, is based
only on the modulation used for the transmission of the input se-
quence. Hence, we obtain a set of polynomial criteria dedicated to
each modulation, in the presence of a perfect synchronization.

As mentioned in section 1, it is possible to use a deflation
approach for equalizing mixtures from outputs of a MIMO
channel. If all signals transmitted use different modulations, then
it could be interesting to extract only one signal of the mixture
thanks to the knowledge of its alphabet. For this, one can apply an
APF criterion on the observations in order to extract the suitable
signal.

If PSK modulations are used in the transmission scheme, then
criteria J4 pr are similar to the Constant Power Algorithm (CPA)
described in [3] since they are reduced to the form J(f) =
[|z(n)? — d(n)||?>. In fact, all PSK-¢ modulations can be char-
acterized with d(n) and g as mentioned in [3]. Nevertheless, con-
trary to APF algorithms, CPA is not able to equalize signals with
amplitude modulations like QAM16. Moreover, one can combine
criteria thanks to a simple theorem:

Theorem 3: If Jy,(z) are contrasts defined on H-Sy, and {ay } are

strictly positive numbers, then J(z) = Y, arJy(2) is a contrast

onH - |J, Sk.

Proof. Property P2 is obtained immediately, because all terms
are positive: J(z) = Y, arJi(z) < X, andr(z) = J(x). If
equality holds, then >, ax[Jk(x) — Jk(2)] = 0, which is possi-
ble only if evry term vanishes because they are all positive. Thus
Ji(z) = Ji(z),Vk. But z € S, for some k, by hypothesis. And
since J}, is a contrast, one can conclude that z = A x z, for some
trivial filter A of H. This proves the theorem. &
Thus, by combining Japr and Jos, one obtain new contrast cri-
teria.

4. OPTIMAL STEP SIZE DESCENT

The usual practice in SISO and deflation cases, is to run a gradient
descent:

v =f(k)+npg(k); f(k+1) =v/|v] (©)

where g(k) denotes the equalizer tap vector at iteration k, g(k)
the gradient of Japr calculated at f(k), and u the step size.
Most iterative algorithms run with a fixed step, which performs
poorly when the criterion contains many saddle points. Even if
the step size is adjusted like in quasi-Newton algorithm, it does
not improve anything since the iterations can stay a long time in
the neighborhood of a saddle point and then suddenly burst out far
away from the attraction basin. One can improve significantly the
convergence time with an optimal step size calculation.
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In fact, criterion Japp is a rational function in the f;’s. It is
also a rational function in variable p since Japr (f (k) + ng(k))
describe the same criterion. As a consequence, all its stationary
points can be explicitly computed as roots of a polynomial in a
single variable.

Now, we can rewrite (2) in a compact form
z(n) = 'y, @)

where y,, = [y(n),y(n — 1),...,y(n — L + 1)]" denotes the
observation vector. Hence, we obtain the criterion

Jarr(f) ==Y QUf'v.)QW," ). ®)

Then, the gradient vector g is

Zyn (F1y,)Q," %) ©)

where the function Q’(z) denotes the derivative of the polynomial
function Q(z).

Now, we consider J4pr as a rational function of p by substi-
tuting z(n) = (f + pg)"y,, in (8):

Japr(p) ==Y QU +19)"y,)Qy," (f* + ng")). (10)
Then, take its derivative with respect to variable pi:

Olarrlut) _ 5~ QU 1)) oy M 4 g

ou ou

n

H * *

-y 9Q(y, (g + 1y ))Q((HMQ)T%).
- H

It suffices to eventually plug back the roots of this derivative into

criterion Japr(u), and to pick up the optimal step size p(k)

for the gradient descent, i.e. the root that maximizes criterion

Japr(u). Of course, all this also applies to Jx a4 ans Jonra.

5. NUMERICAL ALGORITHMS

Algorithms have been implemented in block form for QPSK, PSK-
8 and QAM16 modulations. In this section, we compare the
computational complexities of the CMA and KMA with APF al-
gorithms. Then we compare performances of theses algorithms
with different modulations and for values of Signal to Noise Ratio
(SNR).

5.1. Computational Complexities

Let us remind the Constant Modulus criterion [11]
Jom(z) = E{(1 - 2*)%} (11)
and the Kurtosis Maximization criterion [10]

E{l2|"} - E{z?}?

Jrnm = B{J212) - 2. (12)

We note that they are almost equivalent, because related by a
monotonous decreasing function as mentioned in [6].

We evaluate the computational complexity of an algorithm by
counting the number of floating-point operations (flops) as de-
scribed in [8]. Hence, each multiplication, division, addition, and
subtractions are counted as one flop. We have two different stages
in theses algorithms. The first, which is not present in our imple-
mentation of APF algorithms, is the initialization stage. The sec-
ond corresponds to the main loop of algorithms, i.e. the iterative
descent.

o Initialization: CMA and KMA are based on cumulants val-
ues. Theses algorithms have to compute tensors of cumulants
before running the main loop. Table 2 summaries the number
of flops for both algorithms. As mentioned above, our APF
algorithms do not need any initialization calculus.

Algorithm Complexity (Flops)
L*[14(N -L+2) -3
CMA +L2(26(N — L) + 45)]
L?[28(N —L+2)—6
KMA +L2(26(N — L) + 45)]

L : length of the equalizer
N : length of the block of observations

Table 2. Computational complexities of Initialization stage.

e Main loop: after initialization, the algorithms loop on a cer-
tain number of sweeps. Table 3 shows the theoretical number
of flops for one loop of each algorithm. From this table, APF
algorithms seem to be more complex than CMA or KMA
but we remind that APF do not have any initialization stage.
The value RootsC'omplexity depends on the degree of the

Algorithm Complexity (Flops)
CMA 358L* + 8L + 70L* + 36L + 901
8L5 +392L% + 8L% 4+ 134L7 + 76L
KMA +2150
(N —L—1)(32L + 82 + 82l, — 28
APF +233°3% k) 4 681, 4 22L — 37
—&—RootsC’omplea:ity

lq : length of polynomial Q(z).

Table 3. Computational complexities of one iteration.

polynomial Q(z). Table 5.1 gives the estimated number of
FLOPS for BPSK, QPSK, PSK-8, and QAM16 modulations.
Values have been obtained thanks to command roots (.)

of Matlab.
lq RootsComplexity
2 (BPSK) 57
4 (QPSK) 10457
8 (8-PSK) 177846
16 (16-QAM) 1844165

Table 4. Typical computational complexities for finding roots of

Q(2).

Finally, we can compute the global number of flops for the three
algorithms for different values of L and N. For instance, the length
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of the observations is N = 1000 symbols, and we consider that al-
gorithms need 20 sweeps for estimating the equalizer vector taps.
The number of flops is depicted in figure 1. From this figure, we

Computational complexities of CMA, KMA and APF algorithms
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Fig. 1. Computational complexity for N = 1000 symbols and 20
loops.

see that computational complexities of APF algorithms are approx-
imatively constant when the length of the equalizer increases, con-
trary to CMA and KMA which grow exponentially. For instance,
for a QAM16 modulation, the APF algorithm is very attractive
when L > 8. However, for L < 5, CMA and KMA require less
flops than APF algorithms and then, they are less attractive for
small lengths L.

5.2. Performances

The previous APF algorithms have been tested on complex chan-
nels of length K = 3, with unit variance QPSK and QAM16 white
processes. For each randomly generated channel, blocks of noisy
observations are filtered like in (1). We have tested CMA and APF
algorithms on random channels with data block length of 1200
symbols. The length-10 equalizers returned by algorithms are then
tested with another random sequence of 2000 symbols in order to
compute the Symbol Error Rate (SER). Figure 2 shows average
results for QPSK and QAM16 signals. This figure shows that the
APF algorithm implemented for QPSK signals works better than
CMA when noise is greater than 10dB. For QAM16 signals, the
SER obtained with APF algorithm is always below the SER ob-
tained with CMA. This shows the good behavior of blind APF
algorithms.

6. CONCLUDING REMARKS

Throughout this paper, a family of criteria based on Alphabet
Polynomial Fitting has been introduced for blind SISO equaliz-
ers. Then, from theoretical results, numerical algorithms based
on several polynomial criteria have been implemented in block
form. Next, the comparison of CMA, KMA and APF computa-
tional complexities shows that APF algorithms are very attractive

Performances of APF and CMA
10 . r . T | T

T T
—&- APF-QPSK
-7 APF-QAM16
*- CMA-QPSK
*- CMA-QAM16

Symbol Error Rate

O‘

-3 I I I I I I
8 9 10 1" 12 13 14 15 16 17
Signal to Noise Ratio (dB)

Fig. 2. Performances of APF and CMA with QPSK and QAM16
modulated signals.

for long equalizer vector taps, typically from length greater than
8. Moreover, simulations show that the improvement is relative
to the modulation of the signal. Open issues currently being ad-
dressed include the robustness of APF algorithms in the presence
of carrier residual.
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