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ABSTRACT

This paper presents a novel adaptive equalization algorithm for
time-varying, frequency-selective MIMO systems that harnesses
the finite alphabet property inherent in digital communication. The
algorithm leads to a direct, cost-efficient QR-based recursive up-
dating procedure for the equalizer coefficients that forces adap-
tation to changing channel characteristics. The proposed method
does not require precise channel estimation and uses significantly
less pilot symbols than other traditional equalizers, implying a
drastic reduction in bandwidth overhead. Simulation results con-
firm that this approach outperforms the traditional recursive least
squares (RLS) adaptive equalizer for this application and rivals the
MMSE equalizers with perfect channel knowledge.

1. INTRODUCTION

The major challenge in signal recovery for MIMO (multiple-input-
multiple-output) systems is mitigating the ISI (inter-symbol- inter-
ference) due to multi-path propagation and channel distortion, as
well as ICI (inter-channel-interference), a result of multiple trans-
mitters sharing the communication medium. In general, signal re-
covery and tracking schemes can be classified into two categories:
equalizers that attempt to estimate the channel before equaliza-
tion, or those which directly equalize the received signal with no
attention to channel estimation [1]. We focus on the second type,
because precise channel state information may not be readily or
reliably available at the receiver, especially when the channel is
changing very fast. Furthermore, imprecision in CSI (channel state
information) may cause significant performance degradation for
equalizers relying on channel estimation. Such an approach bears
some resemblance to the well-known class of blind equalizers for
MIMO systems [2], but we refer to it as “semi-blind” because it re-
quires a minimal amount of training symbols for initialization. In
addition, we exploit the finite alphabet property inherent in digital
communication signals, which enables the identification of equal-
ization of unknown MIMO channels [3][4].

1.1. MIMO Channel Model

For simplicity, we start the analysis with the stationary channel
model. In Section 4, the proposed algorithm will be extended
to the time-varying scenario, and the time-varying channel model
will be introduced in Section 5. We consider a frequency-selective
fading MIMO model with t inputs and r outputs:

x(k) =

L∑
l=0

H(l)s(k − l) + n(k), (1)

where L is the maximal degree among all the channels, s(k), x(k)
are t × 1, r × 1 sample stacks of the transmitted, received data
sequences. The expression of (1) in D-transform domain is:

x(D) = H(D)s(D) + n(D), (2)

where H(D) is the r × t transfer function of the MIMO system.

1.2. Zero-Forcing Equalizer for ISI MIMO

For ISI MIMO Channels, an equalizer can be viewed as a bank
of FIR space-time filters at the receiver side, all with finite taps.
Let the t × r polynomial matrix G(D) denote the FIR coefficient
matrix of the equalizer, where each row gT

i
(D) represents the FIR

array for the estimate of a particular input. Then the zero-forcing
constraint [5] requires that

V(D) = G(D)H(D) = diag{Dτi}t
i=1

or, gT

i
(D)H(D) = DτieT

i , (3)

where τi are nonnegative system delays that are allowed upon re-
covery. Here eT

i is a 1 × t vector with all entries zero except 1
at position i, and (·)T denotes transpose. In the absence of noise,
perfect symbol recovery can be accomplished by applying gT

i
(D)

on the receiving data. For noisy channels, we have

ŝi(D) = gT

i
(D)H(D)s(D) + gT

i
(D)n(D)

= Dτisi(D) + gT

i
(D)n(D). (4)

2. ITERATIVE SIGNAL RECOVERY ALGORITHM

The lack of CSI makes it impossible to find a closed-form expres-
sion for the equalizer coefficients in G(D). We adopt a joint es-
timation approach that iterates between the two spaces (equalizer
taps and source symbols) for signal recovery. WLOG, assume the
objective is the recovery of the first stream s1(k). The key steps of
our approach are listed below:

1. Predefine equalizer order and system delay from the feasi-
ble region (cf. Section 3);

2. Obtain a proper initial estimate ŝ
(0)
1 (k) with a block of sym-

bols drawn from the digital constellation;

3. Repeat the following two steps until convergence:

(a) Fix the estimate of ŝ
(i)
1 (k) as if it is correct and find the

equalizer ĝ(k) that minimizes the detection error:

ĝ(i+1)(k) = arg min
ĝ(k)

‖ŝ(i)
1 (k) − ĝT (k) ∗ x(k)‖; (5)
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(b) To drive ŝ1(k) towards a valid finite alphabet sequence,
the new estimate ŝ

(i+1)
1 (k) is updated to the nearest sym-

bols in the constellation:

ŝ
(i+1)
1 (k) = arg min

ŝ1(k)∈FA
‖ŝ1(k)− [ĝ(i+1)(k)]T ∗ x(k)‖,

(6)
where FA is the set of all finite alphabet sequences.

To introduce the matrix-vector expression of (5) and (6), for any
two positive integers ρ and N , we define a r(ρ + 1) × N block
Toeplitz matrix Γρ

N [x] of output signals: Γρ
N [x] ≡

⎡
⎢⎢⎢⎣

x(N − 1) x(N − 2) . . . x(0)
x(N) x(N − 1) . . . x(1)

...
...

. . .
...

x(N + ρ − 1) x(N + ρ − 2) . . . x(ρ)

⎤
⎥⎥⎥⎦ . (7)

The equalizer filters g(k) with order ρ (or, g(D) in D-transform
domain) can also be represented in an extended vector form:

Γρ[ĝ]T ≡ [
ĝT (ρ) ĝT (ρ − 1) . . . ĝT (0)

]
. (8)

Similarly, we stack N consecutive symbols of the signal estimate:

Γ0
N [ŝ1] ≡

[
ŝ1(N + ρ − 1) . . . ŝ1(ρ)

]
. (9)

The convolution of ĝT (k) with x(k) is equivalent to the multi-
plication of the corresponding Toeplitz-structured matrices. The
matrix-vector formulation admits a simple least square solution to
(5) and non-linear mapping solution to (6):

Γρ[ĝ(i+1)]T = Γ0
N [ŝ

(i)
1 ] · Γρ

N [x]†; (10)

Γ0
N [ŝ

(i+1)
1 ] = T (Γρ[ĝ(i+1)]T · Γρ

N [x]), (11)

where T (·) denotes the mapping to the nearest valid symbol in the
digital constellation and (·)† denotes the Moore-Penrose inverse of
a matrix. Furthermore, the two parts in each loop can be combined
to yield an update formula for the signal estimate ŝ1(k):

Γ0
N [ŝ

(i+1)
1 ] = T (Γ0

N [ŝ
(i)
1 ] · Γρ

N [x]† · Γρ
N [x]). (12)

In short, each update involves the following operations:

1. Least-square approximation (linear subspace projection):
The multiplication of Γ0

N [ŝ
(i)
1 ] with a weighting matrix W =

Γρ
N [x]†Γρ

N [x] is a linear projection of the vector Γ0
N [ŝ

(i)
1 ]

into the subspace spanned by the row vectors in Γρ
N [x].

2. Nonlinear decision making (finite alphabet mapping):
The projected vector is mapped into the finite alphabet con-
stellation to obtain the new estimate vector Γ0

N [ŝ
(i+1)
1 ].

3. THEORETICAL FOUNDATION

The most critical concern of an iterative approach lies in its conver-
gence behavior. For this, the following issues must be considered:

1. Existence: Will there exist correct fixed points for the signal
recovery iterations using an FIR combiner?

2. Exclusiveness: In the noise free case, how do we assure that
the system will not converge to a wrong solution?

3. Robustness: How do we make the algorithm’s convergence
behavior robust against noise disturbance?

We elaborate on these three issues in the following sections.

3.1. Existence of Fixed Points in Noise-free Channels

For simplicity, let us temprorarily ignore the effect of noise. The
condition for the existence of fixed points is inherently tied to three
properties of a MIMO system: channel characteristics, system de-
lay, and equalizer order.

The effect of channel characteristics on the existence of fixed
points is established through the (Generalized) Bézout Identity [6].
More precisely, given an FIR MIMO channel H(D), there exists
a polynomial matrix G(D) satisfying the zero-forcing constraint
in (3) if and only if H(D) is delay-permissive right coprime1. For
such a MIMO channel, there is in general a necessary minimum
delay elapsed before an input signal can be reconstructed by any
FIR equalizer. The minimum system delays for different input sig-
nals can be different and are denoted by {τ�

j }t
j=1. In addition, the

existence of fixed points is also related to the equalizer order. In
other words, there is a minimal degree requirement on the matrix
G(D) in (3). As to the sufficient degrees of zero-forcing equal-
izers given H(D), a very comprehensive treatment on the degree
bound is derived in [7].

Theorem 1 (Sufficient Order of Zero-Forcing Equalizer)
Suppose that the MIMO transfer function H(D) is delay-permissive
right coprime and that τ ≥ τ�

i . There exists a zero-forcing equal-
izer for the ith input with order ρ and recovery delay τ if

ρ ≥ max{ν − 1, τ + L − 1}, (13)

where ν is the degree of the null-space minimum basis for H(D).

Proof: For the proof, see [7]. The notion of the null-space
minimal basis is proposed by G. D. Forney, see [6][7].

Two useful corollaries immediately follow the theorem above:

Corollary 1 (Sufficient Equalizer Orders)
Given a t-in-r-out MIMO system with a transfer function H(D):

1. if H(D) is right coprime, a sufficient degree to reconstruct
any signal is ρ ≥ max(ν − 1, L − 1).

2. if H(D) is column-reduced, a sufficient degree to recon-
struct signal i with delay τ (assuming that τ ≥ τ�

i ) is
ρ ≥ max(ν − 1, τ).

In practice, we generally do not have direct knowledge of ν, while
we do have a reasonable estimate on L. Thus, the following ap-
proximation for ν may prove useful: ν ≈ Lt

r−t
.

3.2. Exclusiveness of Fixed Points

In digital transmission, each symbol in an information stream is
an element drawn from a finite set. A sequence is called a (valid)
finite alphabet sequence if and only if each of its symbols is a
valid point in a digital constellation. To establish the exclusiveness
of convergent points, we must exploit the pivotal finite alphabet
property inherent in digital communication systems:

1A polynomial matrix C(D) is said to be a right common divisor (rcd)
of the rows in H(D) if a finite-order polynomial matrix H′(D) can be
found to support the factorization H(D) = H′(D)C(D). A matrix
R(D) is the grcd of H(D) if and only if any rcd R′(D) of H(D) is also
an rcd of R(D). A polynomial matrix (of D) is said to be delay-permissive
(right) coprime if and only if the determinant of any its grcd (greatest right
common divisor) has the form of a pure delay Dτ (if τ = 0, the matrix is
called coprime).
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Theorem 2 (FAE Property for FIR Filters)
Let the 1 × t polynomial vector vT (D) represent a linear FIR

system. For the output vT (D)s(D) to always be a valid symbol
sequence given any input symbol sequence s(D), it is necessary
that vT (D) = cDτeT

i . Here c is a constant, e.g. c = ±1 in the
case of BPSK constellation (or c = ejnπ/2 for any integer n in
case of QPSK).

Proof: See [7].

FAE holds only when the symbol patterns are sufficiently ran-
dom. The failure rate decreases exponentially with an increase of
the block size N . Therefore, the FAE property is a practical as-
sumption as long as N is reasonably large. Without invoking the
FAE property, it is well-known that a MIMO channel is identifiable
only up to a transformation of a unimodular matrix. Fortunately,
such ambiguity can be resolved once the FA constraint is imposed.
Given t (sufficiently long and random) FA sequences, by the FAE
property it is impossible to produce by linear FIR filters a FA out-
put other than one of the t original sequences or its scaled and/or
delayed version; thus the system becomes identifiable except for a
scaling factor, a delay, and/or a permutation on the sources.

3.3. Robustness of Convergence

An important question to be addressed is how to ensure equalizer
robustness in the presence of inevitable noise. Given an H(D) that
is delay-permissive right coprime, the choice of G(D) satisfying
(3) is highly non-unique. A commonly accepted solution is one
which yields the minimum postprocessing noise power E [|gT (k)∗
n(k)|2] = σ2

n‖Γρ[g]‖2, or equivalently, maximum postprocessing
SNR. Clearly, the minimum-norm equalizer is the most desirable.

The optimal SNR gain can be improved by (1) adopting op-
timal equalizer order and (2) purposefully imposing some sys-
tem delay. Equalizer order selection is governed by the following
trade-offs. Given a precisely known channel, the 2-norm of the op-
timal equalizer vector is a monotonically decreasing function with
respect to the FIR order ρ. On the other hand, for blind channels,
a higher ρ implies (a) a greater failure possibility of the FAE prop-
erty, which could result in convergence to incorrect solution, and
(b) an unnecessary expansion of search space, which could ham-
per the convergence process. Thus, the equalizer order must be
chosen in such a way that a desirable SNR gain can be achieved
while still maintaining a manageable search space. With regard to
SNR optimization, the system delay can be more or less treated as
a free parameter. Given the FIR order ρ, the possible range of the
system delay τ is [0, 1, · · · , L + ρ − 1]. The 2-norm, ‖Γρ[g]‖,
displays a

⋃
-shape as a function τ , i.e. they have lower values in

the middle portion of the possible delay range. Hence the optimal
system delay can be empirically chosen as τopt ≈ ρ+L

2
.

4. RECURSIVE SIGNAL TRACKING ALGORITHMS

We extend the iterative signal recovery algorithm in Section 2 to
time-varying channels by developing recursive QR-based equal-
ization schemes capable of fast computation with minor overhead.
We adopt a time-varying MIMO channel model as proposed by
Komninakis in [8]. Each coefficient is the sum of a constant and
time-varying part: hij(k, l) = cij(l) + h̄ij(k, l) where h̄ij is a
zero-mean, wide-sense stationary, complex Gaussian process whose

autocorrelation is related to the Doppler rate fij between the corre-
sponding transmitter and receiver. For further details of the chan-
nel model, see [8]. Such a channel model will generically satisfy
the delay-permissive coprime condition in Section 3.1 2.

To adapt to changing channel characteristics, we introduce a
recursive QR factorization on the modified receiver data matrix,
which now takes the form Γρ

N [x]ΦN to allow multiplication by a
forgetting factor (ΦN = diag(φi)N

i=1 where φ ∈ [0, 1]). Assume
we have a lower-triangular matrix R at time N such that

R Γρ
N [x]ΦN = Q,

where Q is unitary. With the arrival of ∆ additional symbols (or
columns of Γρ

N [x]), we wish to find R̄ satisfying:

R̄ Γρ
N+∆[x]ΦN+∆ = Q̄. (14)

To expedite the computation of R̄, we compute an updating matrix
C such that R̄ ← CR. Note that

Q̄ = CR · Γρ
N+∆[x] · ΦN+∆

= C
[

Q∆ | φ∆Q
]
, (15)

where Q∆ denotes the submatrix formed by the ∆ newly added
columns in Γρ

N+∆[x], pre-multiplied by R. Then we have:

Q̄Q̄∗ = C[Q∆Q∗
∆ + φ2∆Ir(ρ+1)]C

∗ = Ir(ρ+1), (16)

where (·)∗ is the conjugate transpose. Thus C can be computed via
a Cholesky factorization. Based on the analysis above, each time
a new block of data is received, the recursive QR formulation in-
cludes three procedures: whitening, signal and equalizer tracking,
and interference cancellation.

1. Whitening: The first step is to “whiten” the data matrix,
Γµ

N+∆[x]·ΦN+∆, i.e. find R̄ such that the rows of Q̄ are orthonor-
mal. Equalizer tracking on this whitened space has empirically
demonstrated more numerical stability and is quite practical given
the recursive QR factorization. The whitening transformation can
be recursively updated by the matrix C according to R̄ ← CR.

2. Signal and equalizer tracking: Letting Γρ[g̃(N)

i
]T =

Γρ[ĝ(N)

i
]T · R−1 denote the transformed equalizer operating on

the whitened data space Q, we obtain an estimate on the newly ar-
rived symbols: Γ0

∆[ŝ
(N)
i ] = T (Γρ[g̃(N)

i
]T Q∆), where g̃(N)

i
is the

equalizer estimate in the previous block. After obtaining the new
estimate Γ0

∆[ŝ
(N)
i ], we update the equalizer by:

Γρ[g̃(N+1)

i
]T =

[
Γ0

∆[ŝ
(N)
i ] | Γ0

N [ŝi]
]
Q̄∗. (17)

At first glance, (17) seems to require keeping track of both ŝi(k)
and Q in the updates. However, neither is necessary, and in fact all
we need to update is R. Substituting (15) into (17), we have:

Γµ[g̃(N+1)

i
]T = (Γ0

∆[ŝ
(N)
i ] · Q∗

∆ + φ∆Γ0
N [ŝi] · Q∗)C∗

= (Γ0
∆[ŝ

(N)
i ] · Q∗

∆ + φ∆Γρ[g̃(N)

i
]T )C∗.(18)

Thus the update takes on a relatively simple and efficient form.
3. Interference cancellation: When assuming all the source

signals uncorrelated, the channel parameters corresponding to the

2A simple way to test the coprimeness is: H(D) is delay-permissive
coprime if and only if H(D) has full column rank for any complex number
D except D = 0.

IV - 439

➡ ➡



extracted ith input can be estimated as ĥi(k) =
E[x(k+l)ŝ∗i (l)]

E[|ŝi(l)|2]
.

Once the channel is estimated, then the interference caused by that
stream can be accordingly cancelled.

The proposed recursive update resembles the traditional recur-
sive least square (RLS) filtering (derived from Kalman filter) [9]
in structure, but with different updating and feedback weights. We
claim, and provide supporting simulations in the following sec-
tion, that the RQR algorithm provides better tracking capability
and increased robustness while incurring little extra computation.

5. SIMULATION

We present simulation results to demonstrate the performance of
the proposed RQR scheme. The time-varying channels are gener-
ated based on the model presented in Section 4. Figure 1 shows the
symbol error rate comparison for RLS, RQR and MMSE equaliz-
ers under different channel stationarity. We specify channel sta-
tionarity by the Doppler rate, fT (Doppler frequency multiplied
by the symbol period)3. For comparison, we plot the performance
of MMSE equalizer with varying amounts of channel knowledge
imprecision (channel imprecision is introduced by adding a Gaus-
sian random variable to the exact channel coefficient). Each of the
three plots corresponds to a 2-in-5-out MIMO system with L = 4,
and an equalizer order of ρ = 5. Simulations are conducted for
600 times over a block of 1150 symbols, with randomly gener-
ated initial channels. Both RLS and RQR equalizers are given the
first 150 symbols for training purposes and perform unsupervised
equalizer tracking on the remaining 1000 symbols. The proposed
RQR scheme clearly outperforms the traditional RLS method in
all the simulated scenarios, particularly in the low SNR regime.
For the most stationary channel (fT = .005) RQR performs bet-
ter than the MMSE given channel knowledge with 20% impreci-
sion. For less stationary channels, both the RLS and RQR methods
are decisively inferior to the MMSE equalizer with exact channel
knowledge, but the RQR scheme offers comparable performance
to that of the MMSE equalizer with slightly more imprecision
(20 − 30%). It is also demonstrated in the plots that the interfer-
ence cancellation in these two-input cases leads to improvements
of approximately 1−2dB. For the two most stationary channels in
with fT = .005, .01, the interference cancellation approach rivals
the MMSE with exact channel knowledge.

6. CONCLUSION

This paper presents a recursive QR approach to semi-blind equal-
ization of time-varying ISI MIMO channels. The theoretical foun-
dations of the proposed approach are rooted in signal recovery re-
sults derived from the generalized Bézout identity and the finite
alphabet property inherent in digital communication. Concerning
the convergence behavior of the algorithm, three issues are ad-
dressed: existence, exclusiveness, and robustness. It is recognized
that it is necessary to impose a proper equalizer order and sys-
tem delay for correct and robust results. Theoretical and practical
bounds for such parameters are provided. Under the theoretical
framework, we develop a computationally efficient recursive QR
scheme for adaptive equalization of time-varying MIMO systems
and present simulation results confirming its performance.

3For reference, a system with a 2.4 GHz carrier frequency, 20 ksps rate,
and travelling at 60 mph corresponds to a Doppler rate of around .01.
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4 6 8 10 12 14 16 18 20
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

S
E

R

SNR at Receivers (dB)

(c) fT = .03.

Fig. 1. Comparison of RLS, RQR and MMSE schemes (SER vs.
SNR). QPSK signaling with the parameters: N = 1150, t = 2,
r = 5, L = 4, ρ = 5, τ = 5, ∆ = 1, Kl,i,j = 10dB.
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