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ABSTRACT

We solve the overdetermined MIMO Blind Deconvo-
lution problem for independent, stationary, and temporally
white sources. Our approach is based on the SVD analy-
sis of the output auto-correlation matrices at different time
lags. The key idea is the identification of suitable subspace
projectors which achieve an effective reduction of the filter
length. We refer to this process as “filter deflation”. Recur-
sive applications of the filter deflation transform simplify
the problem into an instantaneous BSS problem.

1. INTRODUCTION

Blind Source Separation (BSS) refers to the estimation of
n unknown independent signals, given just a set of mix-
tures observed at m sensors. The fact that the underlying
mixing operator is unknown explains the use of the term
“blind”. According to the mixing process we can divide
models into memoryless linear mixture BSS (also known
as instantaneous BSS) and convolutive mixture BSS (also
referred to as MIMO Blind Deconvolution/Equalization).
In the instantaneous case the mixing operator is a constant
matrix and there is no time shift of the source signals. In-
stantaneous BSS can’t tolerate source multipath dispersion
caused by reflections from obstacles between the source and
the observation. Such multipath phenomena often appear
in many applications in mobile communications, acoustics
etc. Those cases are modeled by MIMO systems and are
the subjects of the convolutive BSS problem. In the past,
BSS was treated using either second-order statistics (SOS)
[1, 2, 3] and or higher-order statistics (HOS) [4, 5, 6]. Most
Blind Deconvolution approaches can be classified accord-
ing to their processing domain: time [6, 7, 8] or frequency
[9, 10]. From the algorithmic point of view methods can be
grouped as iterative [6, 8] or batch [7, 9].

In 1995 Moulines et al. [11] investigated the eigenspace
of the observation covariance matrix. They showed that the
eigenvectors of a SIMO system corrupted with white noise
can be used in order to identify it up to a multiplicative con-
stant. The extension of this approach to a MIMO problem

was proposed in [12]. In [13] Chevreuil and Loubaton re-
duced the MIMO problem into multiple SIMO problems by
multiplying each observation by a complex exponential at a
characteristic frequency (the conjugate cyclic frequency of
each observation). Ma et al. [14] proposed a second order
algorithm using the generalized eigenvalue decomposition
of a matrix pencil formed by output auto-correlation matri-
ces at different time-lags. This approach assumes that the
sources have distinct, nonstationary, colored power spectral
densities.

In this paper we investigate the MIMO Blind Deconvo-
lution problem for independent, stationary, and temporally
white sources. We propose a new method based on Second-
Order Statistics which uses auto-correlation matrices of the
output at different time lags. The key idea is the concept
of “filter deflation”, i.e. the effective reduction of the fil-
ter length achieved by suitable subspace projections. The
proper subspace projector is identified using the SVD anal-
ysis of the output auto-correlation matrices. Necessary con-
dition is the existence of more observations than sources.
We show that recursive filter deflation reduces the MIMO
Blind Deconvolution into instantaneous BSS, provided that
sufficient observations are available.

2. MATHEMATICAL APPROACH

The problem formulation is described below. Consider a
MIMO system involvingn independent source signals s��k�,
� � � , sn�k�, andm observations x��k�, � � � , xm�k�, (m � n)
including additive white noise v��k�, � � � , vm�k�

xi�k� �

LX

l��

nX

j��

aij�l�sj�k � l� � vi�k� (1)

or

x�k� �

LX

l��

A�l�s�k � l� � v�k� (2)

where we used the obvious definitions for the source, obser-
vation, and noise vectors s�k�, x�k�, and v�k�, respectively.
Clearly, the taps A���, ..., A�L�, of the above MIMO FIR
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filter are in the form of m � n matrices. We will assume,
in general, that the sources and the filter are complex as in a
typical multipath situation in digital communications.

We assume that the sources are mutually independent
and temporally white

Efsi�p�sj�q�
�g � � i �� j, any p, q (3)

Efsi�k�si�k � l��g � � any i, k, l (4)

where � denotes the complex conjugate. Without loss of
generality we may also assume that the sources are normal-
ized to unit variance

Efjsi�k�j
�g � � i � ����n � (5)

Therefore the time-lagged auto-correlation matrices for the
source vector s have the properties

Rs�l� � Efs�k�s�k � l�Hg � � � (6)

Rs��� � Efs�k�s�k�Hg � I � (7)

The noise is independent to the sources and has variance

Efv�k�v�k�Hg � ��I �

The proposed approach is based in the analysis of the
time-lagged auto-correlationmatrices of the observation vec-
tor x.

Computing the series of the output auto-correlation ma-
trices for different time-lags we can estimate the filter length
L by observing thatRx�L� �� has all eigenvalues equal to
�� while the same is not true forRx�L�. Indeed,

Rx�L� �� � Efx�k�x�k � �L� ���Hg � ��I � (8)

Rx�L� � Efx�k�x�k � L�Hg

� A�L�A���H � ��I � (9)

By the same token we get an estimate ��� of the noise vari-
ance. We can then subtract ���I from all auto-correlations to
remove the effect of noise:

�Rx�l� � Rx�l�� ���I � (10)

Now recall that m � n, thus for any l, A�l� is a “tall”
matrix. Let

A�l� � UA�l��A�l�VA�l�
H

be the “economy-size” SVD ofA�l�, so �A�l� is a n�n di-
agonal matrix involving only the non-zero singular values,
and the m � n and n � n matrices UA�l�, VA�l� involve
only those singular vectors associated with non-zero singu-
lar values. We therefore have

�Rx�L� � UA�L��A�L�VA�L�
HVA����A���UA���

H � (11)

We notice that the left null space of �Rx�L� is the same
as the null space of UA�L� since any vector z that yields
zHUA�L� � � will also produce zH �Rx�L� � �. The same
relationship holds between the right null space of �Rx�L�
and the null space ofUA���. Consequently, if

�Rx�L� � Ux�L��x�L�Vx�L�
H

is the economy-size SVD of �Rx�L� we must have

spanfUx�L�g � spanfUA�L�g � (12)

spanfVx�L�g � spanfUA���g � (13)

2.1. Filter deflation by subspace projection

Let us define

Q�L� � �Ux�L� jVx�L�	 (14)

and take the orthogonal projector

P�L� � I�Q�L�Q�L�� (15)

where the superscript � denotes the pseudo-inverse oper-
ator. According to our previous discussion P�L� projects
data onto the subspace orthogonal to bothUA�L� andUA���.
Therefore the projection P�L�x�k� should “kill” the taps
A���,A�L� thus deflating the MIMO filter to a lengthL � �
�L����
 (less 2 than the original length). In other words,

x��k� � P�L�x�k�

� A����s�k � �� � � � ��A��L� ��s�k � L� ��

�P�L�v�k� (16)

where A��l� � P�L�A�l�. This result can be used to set a
recursive mechanism into motion. If m � �n the resulting
taps A��l� will have rank r � n since 
n dimensions have
been removed by the projection. Similar steps as above can
be repeated in order to further deflate the filter down to a
length less 2 than before. In fact the projected data x ��k�
need not be computed. One only needs to obtain the new
auto-correlation

�Rx��L� 
� � P�L��Rx�L� 
�P�L�H � A��L� ��A����H

and compute the economy-size SVD

�Rx��L� 
� � Ux��L� 
��x��L� 
�Vx��L� 
��

The new projector P�L � 
� � I �Q�L� 
�Q�L� 
��,
where Q�L � 
� � �Ux��L � 
� j Vx��L � 
�	, will now
“kill” the tapsA��L� ��,A����.

In general, if

m � �
K � ��n

then the filter-deflation procedure can be repeated K times
reducing the filter to a length �L� ��� 
K.

We consider separately two different cases
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� If L is even, then we repeat the filter-deflation pro-
cedure K � L�� times reducing the problem to a
memoryless (instantaneous) BSS problem.

� If L is odd, then we repeat the deflation procedure
K � �L � ���� times reducing the filter to length 2.
Now we are left with the auto-correlation

�Rx���� � A��L�K�A��K�H �

If we remove both A��L � K� and A��K�H there
will be no more taps left. In order to kill only one
tap, instead of the usual 2, we use a “small” projec-
tionP � I�Ux����Ux����T . This will remove only
A�L�K� and it will reduce the length of the filter by
1. The problem is again transformed into an instanta-
neous BSS problem

In either case, the problem is reduced into an instantaneous
BSS, and methods such as ICA can be applied to obtain
estimates of the sources.

2.2. Discussion

The method offers a second-order, recursive, closed-form
reduction of the blind MIMO deconvolution problem to an
instantaneous blind signal separation problem. The latter is
much easier to solve and there is a rich literature of meth-
ods for approaching the problem. A significant advantage
over other MIMO methods is that the algorithm is computa-
tionally very attractive. It is basically consisting of a small
number of SVD computations followed by subspace pro-
jections. There is no specific cost function to be optimized
or any iterative/nonlinear optimization to be performed. In
simulation, almost all the computation effort is consumed
in the calculation of the auto-correlations, while the SVD
steps are instantaneous in comparison.

A drawback of the method is the large number of ob-
servations required. For a filter with �L � �� taps we need
at least m � �L � ��n observations so that, after killing L
taps, the last remaing tap has rank at least n. This, of course,
implies extensive oversampling (spatial or temporal). How-
ever, with todays’ extremely high processing speeds and
cheap memory costs temporal oversampling becomes less
of a problem in many applications.

Moreover, the deflation procedure per se can be used as
a preprocessing tool for effectively reducing the length of
the filter. This can help other MIMO methods whose perfor-
mance is heavily influenced by the filter size. In particular,
ifm � �K���n then we can removeK taps by successive
projections thus reducing the filter size byK.

3. SIMULATIONS

We have simulated the method in a variety of conditions.
The results reported here were produced from a system with

� independent 16-QAM sources. The complex MIMO fil-
ter has length L � � and was randomly generated. The
number of observations is m � �L � ��n � � � ��. The
observation noise power is � � ���. Initially, the filter was
deflated down to length 1 by successive subspace projec-
tions. Subsequently, the resulting instantaneous BSS prob-
lem was treated using the JADE method [15]. In this par-
ticular experimentN � 	��� data samples were processed.
The deconvolved sources are displayed in Fig. 1. The clus-
tering of the recovered constellation is clear. The rotation
of the lattices are due to the unknown complex scale factors
multiplying the reconstructed sources. An important point
that must be emphasized is the execution speed of the algo-
rithm. Our MATLAB implementation of the whole process
took less than 1 second on a 2.4 GHz Pentium-4 computer.

4. CONCLUSION

In this paper we presented a novel second-order method
for blindly reducing the length of a MIMO filter by suc-
cessive subspace projections called “filter deflations”. The
proper subspace, which is orthogonal to the first and the
last filter taps, can be identified by the SVD analysis of
the output auto-correlation matrices for different time lags.
Recursive applications of the deflation process will shrink
the filter, until it is eventually composed of only one ma-
trix. This idea has been applied to the Blind MIMO Decon-
volution problem by transforming it into the easier instan-
taneous Blind Source Separation problem. Subsequently,
well-known BSS/ICA methods (such as JADE) can be used
to estimate the sources.

The method is computationally very fast. The drawback
is the need for a large number of observations. However, the
channel deflation idea may be still useful even if not as many
observations are available. Provided thatm � �K���nwe
can still deflate K taps out of the MIMO filter thus reduc-
ing its length and simplifying the problem for subsequent
treatment.
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Fig. 1. Performance of the method for n � � 16-QAM
sources, filter length L � � andm � �� observations.
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