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ABSTRACT

In the recent past, a number of publications have suggested
superimposed pilots (SIP) for channel estimation in MIMO
systems. However, the performance gain achieved by SIP
compared to conventional (time-multiplexed) training is still
questionable. In this paper we introduce a framework for
modeling a general SIP scheme, of which the conventional
scheme is a special case. Utilizing this framework, we de-
rive a lower bound on the channel capacity to compare the
performance between the two systems. It is found that in
certain scenarios (high SNR, many receive antennas and
short coherence times), it is beneficial to also transmit data
during the training mode (i.e., use SIP). The main conclu-
sion though, is that for most cases where these kind of sch-
emes would be realistic, i.e. for systems with coherence
lengths of more than a few symbols, the general SIP-scheme
reduces to the conventional scheme. Hence, rendering the
same capacity.

1. INTRODUCTION

In order to detect the transmitted data at the receiver, an
estimate of the channel is often used. One common tech-
nique to estimate the channel involves transmission of a
known training sequence. The obtained channel estimate
is then used for detection of the distorted data. Convention-
ally, these pilot symbols are time-multiplexed with the data.
However, recent results suggest that the pilot can be em-
bedded in (added to) the data, so called superimposed pilots
(SIP). See e.g., [1, 2, 3]. This allows transmission of data
also during training. We generalize this scheme by allowing
different power levels for the data, as illustrated in Fig. 1. In
this more general setting, conventional training becomes a
special case of SIP (by simply letting σ2

dt = 0), which gives
a useful framework for comparing the performance of the
two methods.

The advantage of SIP, as compared to conventional train-
ing, is that data is transmitted in all time slots – no slots are
purely dedicated to known pilots. This can lead to higher
spectral efficiency. The drawback of SIP is a degradation
in the channel estimate quality, since the received signal,

which is used for channel estimation, also contains additive
unknown data. The unknown data is typically incorporated
in the noise term, in essence rendering a lower SNR.

Based on a block fading channel model, we find the
optimal training parameters in a SIP-based MIMO system
employing an LMMSE channel estimator, and compare the
performance to the conventional system. We achieve this by
deriving a lower bound on the ergodic channel capacity and
maximize this bound over the time allocated for training and
data transmission, the number of transmit antennas and the
power allocated for training and data symbols. That is, we
extend the results in [4] to cover also the more general SIP
case. The results suggest that the optimal SIP-based system
gain in capacity, compared to conventional training-based
systems, for short channel coherence times and increasing
numbers of receive antennas.

2. DATA MODEL

We employ a block-fading model for the MIMO channel
in which the channel matrix H is assumed to be constant
during T (channel coherence time) symbol periods and then
changes to a new independent realization. This model can
be seen as an approximation of, e.g., a TDMA or frequency
hopping system. The N × M channel matrix is assumed to
have independent complex Gaussian CN (0, 1) entries. M
is the number of transmit antennas and N is the number of
receive antennas.

According to the SIP concept, the transmission of a M×
T data block is split into two modes; 1) transmission of a
data sub-block of length Tt symbols added with pilot sym-
bols, followed by, 2) only unknown data sub-block of length
Td symbols. The length of the total block (SIP block and
data block) equals the channel coherence time, i.e. T =
Tt + Td. Due to the fact that we assume the channel to be
constant over the coherence interval, there is no loss of gen-
erality by placing the training symbols in the beginning of
each block. See Fig. 1.
1) Training mode: Let St and Sdt denote the normalized
transmitted M×Tt complex-valued known pilot symbol and
random data (coded) symbol matrices, respectively. The
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Fig. 1. Conventional pilot insertion (top) and superimposed pilot
(bottom).

signal matrices also have the following constraints; tr{RSt
}

= MTt and tr{RSdt
} = MTt, where RSt

= StS
H
t and

RSdt
= E{SdtS

H
dt}. The power allocated for the train-

ing and data symbols are denoted by σ2
t and σ2

dt, respec-
tively, i.e. the total transmitted energy during training is
(σ2

t + σ2
dt)Tt. The received N × Tt signal matrix during

training is then

Xt = H

(√
σ2

t

M
St +

√
σ2

dt

M
Sdt

)
+ Vt, (1)

where Vt is the N × Tt additive noise matrix with indepen-
dent CN (0, 1) entries and is both channel and data indepen-
dent.
2) Data mode: During data only transmission we transmit
the M × Td normalized data matrix Sd. Thus, the received
N × Td signal matrix becomes

Xd =

√
σ2

d

M
HSd + Vd, tr{RSd

} = Etr{SdSH
d } = MTd,

(2)
where Vd is the N × Td noise matrix with independent
CN (0, 1) entries. Etr{·} denotes the expected value of the
trace. The power allocated for data symbols is denoted by
σ2

d and the total energy during data mode is σ2
dTd.

The LMMSE principle is used to obtain the channel es-
timate. Due to its orthogonality property, the estimate Ĥ is
uncorrelated with the estimation error H̃ = H−Ĥ. Treating
the unknown data as noise, the LMMSE channel estimate
can be written as

Ĥ = N

√
σ2

t

M
XtR

−1

XH
t

SH
t

=

√
M

σ2
t

XtS
H
t

(
M(σ2

dt + 1)

σ2
t

I + StS
H
t

)−1

. (3)

In the second step we have used RSH
dt

= E{SH
dtSdt} =

MI. It is later argued that choosing the data to be spatio-
temporally uncorrelated maximizes the mutual information

between the transmitted and the received matrices. After
removing the pilots and using the channel estimate as the
true channel, we will have the following signal model in the
training mode

X′
t = Xt −

√
σ2

t

M
ĤSt =

√
σ2

dt

M
ĤSdt +√

σ2
t

M
H̃St +

√
σ2

dt

M
H̃Sdt + Vt︸ ︷︷ ︸

V′

t

, (4)

where the noise V′
t has variance the σ2

V′

t
� 1

NTt
Etr{V′H

t V
′
t}

= σ2
t σ2

H̃St
+ σ2

dtσ
2

H̃
+ 1. Moreover, σ2

H̃St
is given by

σ2

H̃St
� 1

MNTt
Etr{H̃H

H̃RSt
} and σ2

H̃
� 1

MN Etr{H̃H
H̃}.

Again using the channel estimate as the true channel, we
have the following signal model in the data mode

Xd =

√
σ2

d

M
ĤSd +

√
σ2

d

M
H̃Sd + Vd︸ ︷︷ ︸
V′

d

, (5)

where the noise variance is σ2
V′

d

� 1
NTd

Etr{V′H
d V

′
d} =

σ2
dσ2

H̃
+ 1.

Remark: In the SIP case, the LMMSE estimate is not the
MMSE estimate. The noise V′

t has been colored by the
channel and this information is ignored by the LMMSE es-
timator. Hence, conditioned on Xt and St, the noises V′

t

and V′
d are correlated with the respective signals Sdt and

Sd. Since the SIP scheme ignores this information, we can
simply replace the noises V′

t and V′
d with other noises that

have the same variance but that also are uncorrelated with
the respective signals.

3. CAPACITY AND OPTIMIZATION

In this section a lower bound on the capacity for the SIP-
based system described above is derived. We want to point
out that the capacity bound of the SIP-based system is de-
rived in a way to be comparable with the conventional scheme
[4]. That is, we extend the results in [4] to SIP operation.

The capacity bound is found by maximizing a lower
bound on the mutual information. Such an approach is ap-
plicable since we model the channel as time discrete and
memoryless. Let Ĥ = f(Xt, St) be the channel estimate,
formed by treating the data Sdt as noise. The mutual infor-
mation can then be written as

I = I[(Xd, Xt, St, Ĥ); (Sd, Sdt)]

= I[Xd; (Sd, Sdt) | (Xt, St, Ĥ)]︸ ︷︷ ︸
Id

+

I[Xt; (Sd, Sdt) | (St, Ĥ)]︸ ︷︷ ︸
It

+

I[(Ĥ, St); (Sd, Sdt)]. (6)
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The idea of using a training (or SIP) based system is to
use the channel estimate as if it was the true channel. This
means that we can bound the mutual information It and Id

by only condition on the channel estimate i.e.

Id ≥I[Xd; (Sd, Sdt) | Ĥ] (7)

It ≥I[Xt; (Sd, Sdt) | Ĥ]. (8)

Clearly, these measures are bounds since we have disre-
garded information by using the channel estimate as if it was
correct. By conditioning on the channel, the data symbols
will only affect the mutual information in their respective
modes, which means that I[Xd; (Sd, Sdt)|Ĥ] = I[Xd; Sd|Ĥ]
and I[Xt; (Sd, Sdt)|Ĥ] = I[Xt; Sdt|Ĥ]. The last term in (6)
will not contribute to the capacity, since the idea of the SIP-
scheme is to treat Sdt as noise when estimating the channel.
This means that data transmitted during the training mode is
optimized only to maximize the mutual information for the
known channel case. Finally, the SIP-based system capacity
is given by the maximum, with respect to the distributions
of Sd and Sdt, of this bound on the mutual information

Csip = max
1

T

{
I(Xd; Sd | Ĥ) + I(Xt; Sdt | Ĥ)

}
. (9)

Starting from (4)–(5) and noting that the conditions of The-
orem 1 in [4] are fulfilled, we can conclude that the noise
with a given covariance matrix that will yield the lowest
mutual information is Gaussian distributed. On the other
hand, the distribution of the transmitted signal that maxi-
mizes the mutual information is also Gaussian distributed
with no space or time correlation. That is, both RSdt

and
RSd

should be multiples of the identity matrix. A lower
bound on the capacity will then be composed of two terms;
one for the training mode and one for the data mode and is
given by

Csip ≥ E
Tt

T
log det

(
I + ρt

H̄H̄H

M

)
+

E
Td

T
log det

(
I + ρd

H̄H̄H

M

)
. (10)

The elements of the normalized channel H̄ =
ˆH

σ
Ĥ

will be
uncorrelated with zero mean and unit variance and have a
distribution that is approximately Gaussian. The normaliza-
tion constant σ

Ĥ
is given by σ2

Ĥ
= 1

NM Etr{ĤĤ
H} and the

effective SNRs are given by

ρt =
σ2

dtσ
2

Ĥ

σ2
V′

t

=
σ2

dtσ
2

Ĥ

σ2
t σ2

H̃,RSt

+ σ2
dtσ

2

H̃
+ 1

(11)

ρd =
σ2

dσ2

Ĥ

σ2
V′

d

=
σ2

dσ2

Ĥ

σ2
dσ2

H̃
+ 1

. (12)

To maximize the capacity, (10) has to be optimized with
respect to the following parameters: St, Tt, Td, σ

2
t , σ2

dt, σ
2
d

and M subject to the constraints Tt + Td = T , (σ2
dt +

σ2
t )Tt +σ2

dTd = σ2T , where T is the coherence time of the
channel. It might seem counter-intuitive to optimize over
the number of transmit antennas, since when the channel is
known the capacity is known to be an increasing function of
the number of transmit antennas [5]. The reason why there
will be an optimum is that the more transmit antennas we
use, the more time we have to spend on training, since we
need at least as many training symbols as there are trans-
mit antennas for identifiability. Even if data is transmitted
during the training mode, the effective SNR is much lower
than during the data mode, so we want to keep the training
period as short as possible, as we will later see.

Firstly, the criterion function (10) is concentrated with
respect to the training sequence, St. If the same St maxi-
mizes both ρt and ρd, that St will clearly also maximize the
capacity. Using the orthogonality of the LMMSE estimate,
we can write σ2

Ĥ
= 1 − σ2

H̃
. Hence, from (12) we can see

that maximizing ρd is equivalent to minimizing σ2

H̃
, which

in turn corresponds to following minimization problem

min
St,||St||2F =MTt

tr

[
I +

σ2
t

M(1 + σ2
dt)

(
StS

H
t

)T
]−1

, (13)

and the solution StS
H
t = TtI. This choice of training se-

quence will also maximize the effective SNR during train-
ing mode. By rewriting (11) as

ρt =
σ2

dt(1 − σ2

H̃
)

1 + σ2
dt

NTt
+ 1︸ ︷︷ ︸

K1

+

(
σ2

dt −
M(1 + σ2

dt)

Tt

)
︸ ︷︷ ︸

K2

σ2

H̃

, (14)

it is obvious that maximizing ρt is the same as minimizing
σ2

H̃
, since Tt ≥ M and hence K1 + K2 > 0. Therefore, the

solution is again given by StS
H
t = TtI.

Inserting this training sequence into (11) and (12) the
effective SNRs become

ρt =
σ2

dtσ
2
t Tt

(σ2
dt + σ2

t + 1)(σ2
dt + 1)M + σ2

t Tt
(15)

ρd =
σ2

dσ2
t Tt

(σ2
d + 1)(σ2

dt + 1)M + σ2
t Tt

. (16)

Numerical optimization of (10) is used to find the opti-
mal values of the remaining parameters.

4. NUMERICAL EXAMPLES

To illustrate the theories described above, the capacity lower
bound has been calculated for a typical case where it can be
beneficial to use the SIP scheme. In this paper a scenario
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Fig. 2. Optimal power in data symbols during training, σ2
dt,opt,

vs. channel coherence time T and number of receivers N .

with an average SNR of 10 dB is considered, but similar
results can be obtained also at other SNR values. We have
evaluated the bound for the optimal number of transmit an-
tennas, which depends on the number of receive antennas
and the coherence length of the channel. Only channels with
relatively short coherence time have been studied, since the
longer the coherence time is, the lower the gain provided
by the SIP scheme will be. This is due to the fact that the
effective SNR during the data mode will be lower because
of the extra noise in the estimation. Also, the fraction of
time which is dedicated solely for training is reduced in the
training based scheme.

In all scenarios we have found that the optimal num-
ber of training symbols always was equal to the number
of transmit antennas, i.e. the smallest possible. This is
in agreement with [4] and intuitively appealing since dur-
ing the training mode the effective SNR will become much
lower than during the data mode because of two things: First
the data power σ2

dt will be relatively small in order not to in-
troduce a lot of extra noise during channel estimation, and
second that there will be an extra noise term from the known
training symbols due to the channel estimation error.

As can be seen in Fig. 2 the power of the data in the
training mode increases as the number of receive antennas,
N , increases. Most power should of course be allocated
when the training mode takes up the whole coherence inter-
val. We want to point out that it is not very often that it is
beneficial to transmit data during the training mode. From
Fig. 2 it can be concluded that there is only a small set of
systems, especially with many receive antennas and short
coherence times, where it is suboptimal to have σ2

dt = 0.

In order to compare the performance of a conventional
training-based scheme to that of a scheme based on SIP, the
performance gain Cconv/Csip is shown in Fig. 3. It is found
that the conventional training-based scheme will reach the
SIP-based capacity as the coherence time increases or the
number of receive antennas decreases.
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5. CONCLUSIONS

In this paper we have extended the results in [4] to also
cover superimposed pilot (SIP) based systems. The frame-
work we set up for SIP also includes the conventional train-
ing scheme as a special case. Hence, we can compare the
performances of the two systems by optimizing over their
respective parameters. It is shown that in certain scenar-
ios (many receive antennas and short coherence times) it
is beneficial to also transmit data during the training mode
(i.e. use SIP). The main conclusion, though, is that for
most cases where a training based scheme would be real-
istic, i.e. for systems with coherence length of more than
just a few symbols, the optimal SIP-scheme reduces to the
optimal conventional scheme.
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