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ABSTRACT

Orthogonal Frequency Division Multiplexing (OFDM)
transmission with superimposed training is considered in
this paper. The superimposed training scheme is promoted
for its high bandwidth efficiency, low computational com-
plexity, and possibly improved power amplifier (PA) effi-
ciency. Channel equalization is also straightforward thanks
to the OFDM structure. By analyzing the peak-to-average
power ratio (PAR) of the superimposed OFDM signal and
utilizing a peak power constraint, we demonstrate that it is
possible to lose a little in the information signal power, but
gain a lot in the power that is devoted to channel sounding.

1. INTRODUCTION

High-speed data transmission is a challenging problem in
wireless communications. A major difficulty is the inter-
symbol-interference (ISI) caused by multipath fading.

Orthogonal Frequency Division Multiplexing (OFDM)
decomposes a wideband channel into a set of independent
narrowband channels so that the frequency selective chan-
nel appears flat on each subcarrier. With respect to chan-
nel estimation, pilot-symbol assisted modulation (PSAM)
is commonly employed in OFDM systems whereby training
pilots are inserted in the frequency (and/or time) grids of
the OFDM symbols. However, these training pilots con-
sume valuable bandwidth and reduce the data rate. On the
other hand, superimposed training has also been considered:
training pilots are added onto the time-domain information
signal and the channel is estimated without sacrificing the
data rate.

The idea of superimposed training; i.e., simultaneous
information transfer and channel sounding, was first de-
scribed in a 1965 paper [1], albeit for analog communi-
cation. It was advocated for digital communication sys-
tems by Farhang-Boroujeny in 1995 [2] and more investiga-
tions followed in [3–6]. Recently, the superimposed training
framework has been generalized to include precoding (affine
precoding) and has attracted much interest [7, 8].

Superimposed training for OFDM has the following ad-
vantages: (i) no loss of information rate as compared to
PSAM; (ii) very simple channel estimation; (iii) one-tap
equalization thanks to the OFDM structure; (iv) possibil-
ity for improved power efficiency at the transmitter. Points
(i)-(iii) are well documented in the literature [2–8]. The
purpose of this paper is to bring about (iv), by examin-
ing the average transmit power of a power amplifier (PA)
under a peak power constraint. We do so by deriving the
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complementary Cumulative Distribution Function (CCDF)
of the peak-to-average power ratio (PAR) of the OFDM
signal with superimposed training. We will show that by
judiciously selecting the superimposed training sequence,
we may sacrifice a little in the power that is dedicated to
the information signal, but gain a lot in the power that is
devoted to channel sounding, for the same amount of DC
power consumed by a class A or light class AB PA. Such
an “uneven” (and favorable!) trade-off is possible because
with superimposed training, the average output power can
be increased without increasing the DC or peak power, ren-
dering the PA as more efficiently utilized.

2. SUPERIMPOSED TRAINING

Consider a block fading channel y(n) = x(n) ∗ h(n) + v(n),
where x(n) is the transmitted signal, y(n) is the received
signal, h(n) is the impulse response that is the convolution
of the transmit filter, the frequency-selective channel, and
the receive filter, v(n) is the additive noise, and ∗ denotes
convolution. We have omitted the block index in the above
equation for notational simplicity. Without knowing x(n),
trying to estimate h(n) from y(n) constitutes a blind chan-
nel estimation problem. Interestingly, it is shown in [2–8]
that by allowing a known p(n) to become part of x(n); i.e.,
x(n) = s(n) + p(n), where the zero-mean s(n) is still un-
known, it is now possible to uncover h(n) from y(n). This
is referred to as superimposed training. Writing

y(n) = p(n) ∗ h(n) + s(n) ∗ h(n) + v(n)

= p(n) ∗ h(n) + u(n), (1)

we have u(n) = s(n) ∗ h(n) + v(n), which has zero-mean.
We realize from (1) that we can view p(n) as the input,

and y(n) as the output of the same channel h(n), and solve
for h(n) using linear least squares. Therefore, with superim-
posed training, we can estimate the channel “blindly” from
y(n) without complete knowledge about x(n). An espe-
cially simple method was described in [3], where a periodic
impulse train p(n) = a

∑
l δ(n−lP ) was used, and when the

period P ≥ L (the channel length), {h(n)}L−1
n=0 can be esti-

mated as 1
aM

∑M−1
l=0 y(n + lP ) involving only a first-order

statistic! Many p(n) sequences can be utilized; p(n) with a
constant |p(n)| is a popular choice.

One major advantage of the superimposed training
method is that it incurs no loss of information rate. Since
part of the transmitted power is diverted to the training
signal p(n), it is generally expected that for a fixed total
average transmit power Pt, superimposed training will per-
form much worse than traditional training in terms of BER,
as a price paid for the higher information rate.

In this paper, we take a novel standpoint that, to com-
pare various transmission methods, it is perhaps better to
consider the DC power drawn by the PA as fixed. In that
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context, we can select a p(n) such that Pt of the super-
imposed OFDM signal is larger than the Pt of the OFDM
signal alone, for the same Pdc. Therefore, some diversion
of Pt to p(n) can be offset by a larger increase in Pt itself,
making superimposed training more appealing than what is
already known in the literature.

3. THE DISTRIBUTION OF PAR

To start, let us consider the following question: For a fixed
amount of power Pdc consumed by the PA, what is the
average power Pt that is transmitted through the channel?
Obviously, the more power that is delivered to the load for
a given level of DC power (e.g., battery drain), the better.
Fixing Pdc is equivalent to fixing the peak power Pmax of a
class A or light class AB PA [9].

Consider for simplicity, a completely linear PA so the
maximum output power Pmax can be reached without in-
curring nonlinear distortions. Although the PAR is a quan-
tity that is used to characterize the PA input, whereas Pmax

and Pt are PA output properties, in the case of a linear PA,
Pmax/Pt =PAR, where PAR is defined as

PAR =
maxn{|x(n)|2}

E{|x(n)|2} . (2)

Therefore, for a given Pmax, reducing the PAR is equiv-
alent to increasing Pt. In the PAR reduction literature,
attention has been on peak power reduction methods. We
argue that since the PA in the communication system is
peak power limited, and its efficiency is determined by the
average output power, it makes sense to investigate PAR re-
duction methods that aim at increasing the average power
while keeping the peak power fixed.

In this paper, we will show that it is possible to achieve
PAR reduction with superimposed training in OFDM. The
possibility for PAR reduction, together with the simple
channel estimation procedure offered by the superimposed
training scheme, as well as simple channel equalization that
is the hallmark of OFDM, make superimposed OFDM a
promising transmission technique.

3.1. CCDF of PAR for Superimposed OFDM
Assume without loss of generality that S(k) are i.i.d., drawn
from a known constellation (e.g., QPSK) with variance σ2

s .
When the number of subcarriers N is large, we can use
the Central Limit Theorem to show that the time-domain
OFDM signal s(n) is approximately i.i.d. complex Gaussian
distributed with zero-mean and variance σ2

s [10]. It follows
that x(n) = s(n) + p(n) is independent complex Gaussian
distributed with time-varying mean p(n) and variance σ2

s .
For simplicity, we do not consider the cyclic prefix in the

PAR analysis since the cyclic prefix does not affect the peak
or the average power. Denote by r(n) the instantaneous
power of x(n); i.e., r(n) = |x(n)|2. We infer that r(n) has a
noncentral chi-square distribution with 2 degrees of freedom
and noncentrality parameter |E[x(n)]|2 = |p(n)|2.

The CDF of r(n) is

FRn(r) = 1 − e
− |p(n)|2+r

σ2
s

∞∑
k=0

(
|p(n)|√

r
)kIk(

|p(n)|√r

σ2
s/2

), (3)

where Ik(a) is the k-th order modified Bessel function of the
first kind, which may be represented by the infinite series

Ik(a) =

∞∑
n=0

(a/2)2n+k

n! (n + k)!
, (4)

for a ≥ 0.

The average power of x(n) is given by E{|x(n)|2} = σ2
s +

σ2
p, where σ2

p = 1
N

∑N−1
n=0 |p(n)|2 is the average power of the

superimposed training sequence p(n).
Therefore, the CCDF of the PAR of x(n) can be expressed

as

Pr{PAR > γ} = 1 − Pr{r(n) ≤ γ(σ2
s + σ2

p), ∀n}

= 1 −
N−1∏
n=0

FRn{γ (σ2
s + σ2

p)}, (5)

by independence of r(n) at different n’s.

3.2. Periodic Pilot Sequence
Next, we investigate the CCDF of the PAR for the super-
imposed OFDM signal with a periodic p(n). The idea of ex-
ploiting the cyclostationarity induced by the periodic p(n)
for simple channel estimation is discussed in [3–6].

Since the noncentrality parameter of r(n) is |p(n)|2, the
CDF FRn(r) is also periodic in n. Eq. (5) can thus be
simplified to:

Pr{PAR > γ} = 1 −
(

P−1∏
n=0

FRn{γ (σ2
s + σ2

p)}
)M

, (6)

where for simplicity, we have assumed that M = N/P is an
integer. Next, we specialize to the case where p(n) is the
periodic impulse train used in [3].

Consider frequency-selective block fading channels. It
was shown in [8,11,12] that the optimal placement of pilot
tones for PSAM is to modulate L pilots with equal power
onto equally spaced subcarriers (i.e., insert pilots periodi-
cally in the frequency domain). Note that periodic insertion
of pilot tones in the frequency domain with period M is
equivalent to periodic superposition of an impulse sequence
in the time domain with period P = L.

To utilize the bandwidth more efficiently, we proposed
in [4] to modulate information sub-symbols onto each sub-
carrier, but superimpose the periodic impulse sequence in
the time domain. In this section, we characterize the re-
sulting PAR by its CCDF and show that it is a function of
the period P , the block length N , and the power allocation
factor

β =
σ2

p

σ2
s + σ2

p

. (7)

Denote by p1(n) the periodic impulse sequence, p1(n) =√
Pσp

∑
l δ(n−lP ). Substituting it into (3), replacing Ik(a)

by its asymptotic form ea/
√

2πa for k � a, and simplifying
the resulting equation for 0 < β < 1 and γ � β (i.e., PAR
� 1, which is true for OFDM), we obtain an approximate
close-form expression

Pr{PAR > γ} = 1 −
(
1 − e

− γ
1−β

)N−M

⎛
⎝1 −

√
(1 − β)

√
γ/(2π

√
Pβ)

√
γ −√

Pβ
e
− P β+γ

1−β

⎞
⎠

M

. (8)

A perhaps natural reaction is that adding p1(n) to s(n)
is bound to increase the PAR of the resulting x(n) = s(n)+
p1(n). As we will see in Section 5.1., this is not necessarily
the case. The PAR of p1(n) equals P (a constant), whereas
the PAR of s(n) increases with increasing N . For example,
it can be shown that the median PAR of s(n) is 6 (7.7
dB) for N = 256; thus with P ≤ 6, the PAR of p1(n) is
comparable with that of s(n).
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3.3. Constant Magnitude Pilot Sequence

For fast fading channels, it is reasonable to consider p(n)
with constant |p(n)|. It is shown in [5] and [6] that peri-
odic p(n) sequences with constant |p(n)| provided low mean-
squared error of the channel estimate and desirable receiver
BER performance.

When |p(n)| is constant, such as when p(n) is a polyno-

mial phase signal; e.g., p(n) = σp ejanm

(monomial phase
signal here), FRn(r) is not a function of n; thus, the CCDF
is determined as:

Pr{PAR > γ} = 1 −
(

1 − e
− γ+β

1−β

∞∑
k=0

(
√

β/γ)kIk(
2
√

γβ

1 − β
)

)N

.

When β = 0; i.e., p(n) = 0, the above CCDF expression
reduces to

Pr{PAR > γ} = 1 − (1 − e−γ)N , (9)

which is commonly cited in the literature as the CCDF of
the PAR of the OFDM signal. If 0 < β < 1 and β � γ, we
can replace Ik(a) by its asymptotic form ea/

√
2πa for k � a

and simplify to obtain the close-form expression (proof is
in [13], but is omitted here due to the space limitation)

Pr{PAR > γ} = 1 −
(

1 −
√

1 − β

4π
e
− (

√
γ−√

β)2

1−β

)N

. (10)

4. AVERAGE TRANSMIT POWER FOR
SUPERIMPOSED OFDM

In this section, we limit ourselves to the case where p(n)
has constant magnitude. We will show that a single pa-
rameter β influences Pt and the power that is allocated to
transmitting the information signal, Ps = Pt(1 − β).

Since PAR is a random quantity, we first determine a
“representative” PAR value γ0 based on the CCDF expres-
sion in (10). For a given probability p (e.g. p = 10−2), solve
for γ0 by setting the right hand side (RHS) of (10) equal to
p. We then obtain

γ0 =

(√
β +

√
(1 − β) ln {

√
(1 − β)/4π/(1 − (1 − p)

1
N )}

)2

.

The average transmit power for superimposed OFDM with
constant |p(n)| can then be expressed as

Pt =
Pmax

γ0
. (11)

The power that is devoted to the information sequence is
Ps = Pt(1 − β).

For the OFDM signal s(n), by setting the RHS of (9)
to p, we can also obtain a “representative” PAR γ ′

0 for the
OFDM signal s(n):

γ′
0 = − ln (1 − (1 − p)1/N ). (12)

The average transmit power for s(n) is then

P ′
t = P ′

s =
Pmax

γ′
0

. (13)

Since γ0 < γ′
0 generally, we will have Pt > P ′

t.

6 7 8 9 10 11 12 13 14
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

γ (dB)

C
C

D
F

w/o pilot
Added w/ p

1
(n)

β = 0.1 

0.3

0.50.70.9

Figure 1. CCDF of PAR of x(n) = s(n) + p1(n).
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Figure 2. CCDF of PAR of x(n) = s(n) + p2(n).

5. NUMERICAL EXAMPLES

In this section, the number of sub-carriers in each OFDM
block is N = 256, and the period of p(n) is P = 4. We
consider two superimposed training sequences:

p1(n) =
√

Pσp

∑
l

δ(n − lP ), 0 ≤ n ≤ N − 1, (14)

p2(n) = σp ej π
4 e−j πn2

4 , 0 ≤ n ≤ N − 1. (15)

5.1. PAR and Power Allocation
First, we would like to compare the PAR of the OFDM
signal s(n) with that of s(n) + pi(n), i = 1, 2, for varying
values of the power allocation factor β, by fixing σ2

s = 2.
Interestingly, Fig. 1 shows that the superposition of p1(n)

onto s(n) can reduce the PAR of the OFDM signal s(n)!
This is because p1(n) has a PAR of 10 log10(P ) ≈ 6 dB,
which can be smaller than the PAR of the OFDM signal
s(n).

Fig. 2 shows how the PAR is affected by the superposition
of a p(n) with constant magnitude; e.g., p2(n). We can see
that the CCDF decreases as β is increased. This is expected
since p2(n) has a PAR of 0 dB, whereas the PAR of the
OFDM signal s(n) is much larger.

5.2. Average Output Power and Power Allocation
Fig. 3 shows the increase in the average transmit power Pt

due to the superposition of any constant-magnitude pilot
sequence p(n). We have set the baseline P ′

t = P ′
s = 0 dB

for the average transmit power of the original OFDM signal.
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Figure 3. Pt and Ps = Pt(1 − β) vs. β.

Setting p = 10−2, we obtain γ0 as a function of β only, as
well as γ′

0. Since Ptγ0 = P ′
tγ

′
0 = Pmax, we can determine

Pt as a function of β only; Ps = Pt(1 − β) is subsequently
determined.

Fig. 3 shows Pt and Ps vs. β. From Fig. 3, we observe
that with a constant magnitude p(n), Ps decreases while
Pt increases rapidly as β increases. Moreover, we see that
when 0 < β < 0.7, Ps is reduced by < 1 dB, but Pt can
be increased by up to 4 dB; the extra power can be used to
estimate the channel. In addition, the close-form expression
in (11) is shown to agree with simulated results using i.i.d.
QPSK OFDM symbols.

5.3. BER Performance

In this example, we show the BER performance of the first-
order channel estimator followed by a one-tap frequency-
domain equalizer. The length of the FIR channel is L = 4.
The channel coefficients were generated from a zero-mean
unit variance complex Gaussian distribution, and 500 in-
dependent Monte Carlo runs were performed. The OFDM
sub-symbols {S(k)} were drawn from an i.i.d. BPSK con-
stellation. The SNR is defined Eb/N0 = Pt/(σ2

v/2), where
σ2

v is the average power of the noise. Fig. 4 shows the BER
performance of the superimposed training scheme, followed
by a one-tap frequency-domain equalizer. From Fig. 4, we
can see that the BER performance is quite close to the
known channel case. This example illustrates that a judi-
cious choice of p(n) can trade a small amount of information
signal power Ps = Pt(1 − β) for much more training pilot
power Ptβ.

6. CONCLUSIONS

We advocated in this paper, superimposed training with
OFDM as an excellent combination that permits simple
channel estimation as well as simple channel equalization.
We presented a novel viewpoint of communication sys-
tem performance evaluation with a peak power constraint.
By analyzing the CCDF of the PAR of the superimposed
OFDM signal and linking the PAR to the average transmit
power, we demonstrated that the higher data rate that is
inherent with the superimposed training scheme, does not
necessarily come with a performance loss in terms of BER.
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