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ABSTRACT

Channel estimation for single-input multiple-output
(SIMO) time-invariant or slowly time-varying channels
is considered using superimposed training. A periodic
(non-random) training sequence is arithmetically added
(superimposed) at a low power to the information sequence
at the transmitter before modulation and transmission.
Two versions of a two-step approach are adopted where
in the first step, following [11], we estimate the channel
using only the first-order statistics of the data. Using the
estimated channel from the first step, a linear MMSE equal-
izer and hard decisions, or a Viterbi detector, are used to
estimate the information sequence. In the second step a de-
terministic maximum likelihood (DML) approach or an ap-
proximation to it, is used to iteratively estimate the SIMO
channel and the information sequences sequentially. Illus-
trative computer simulation examples are presented where
we compare the proposed approaches to the conventional
(time-multiplexed) training based approach.

1. INTRODUCTION

Consider an SIMO (single-input multiple-output) FIR (fi-
nite impulse response) linear channel with N outputs. Let
{s(n)} denote a scalar sequence which is input to the SIMO
channel with discrete-time impulse response {h(l)}. The
vector channel may be the result of multiple receive anten-
nas and/or oversampling at the receiver. Then the symbol-
rate, channel output vector is given by

x(n) :=

L∑
l=0

h(l)s(n − l). (1)

The noisy measurements of x(n) are given by ({v(n)} is
possible nonzero-mean [11], temporally and spatially white,
Gaussian)

y(n) = x(n) + v(n). (2)

A main objective in communications is to recover s(n)
given noisy {x(n)}. In several approaches this requires
knowledge of the channel impulse response [10], [8]. In
training-based approach, s(n) = c(n) = training sequence
(known to the receiver) for (say) n = 0, 1, · · · , Mt − 1 and
s(n) for n > Mt − 1 is the information sequence (unknown
apriori to the receiver) [10], [8]. Therefore, given c(n)
and corresponding noisy x(n), one estimates the channel
via least-squares and related approaches. For time-varying
channels, one has to send training signal frequently and
periodically to keep up with the changing channel. This
wastes resources. An alternative is to estimate the channel
based solely on noisy x(n) exploiting statistical and other
properties of {s(n)} [10], [8]. This is the blind channel es-
timation approach. In semi-blind approaches, there is a
training sequence but one uses the non-training based data
also to improve the training-based results: it uses a com-
bination of training and blind cost functions. This allows
one to shorten the training period. Optimal placement and
performance lower bounds for semi-blind approaches are in
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[1] and [2]. More recently a superimposed training based
approach has been explored where one takes

s(n) = b(n) + c(n), (3)

{b(n)} is the information sequence and {c(n)} is a training
(pilot) sequence added (superimposed) at a low power to
the information sequence at the transmitter before modula-
tion and transmission. There is no loss in information rate.
On the other hand, some useful power is wasted in superim-
posed training which could have otherwise been allocated
to the information sequence. Superimposed training-based
approaches have been discussed in [4], [5] and [7] for SISO
systems. The UTRA specification for 3G systems [6] allows
for a spread pilot (superimposed) sequence in the base sta-
tion’s common pilot channel, suitable for downlinks. Peri-
odic superimposed training for channel estimation via first-
order statistics for SISO systems have been discussed in [12]
and [11]. In [3] performance bounds for training and super-
imposed training-based semiblind SISO channel estimation
for time-varying flat fading channels have been discussed.

Objectives and Contributions: In this paper we
extend the first-order statistics-based approach of [11] to
semiblind versions using linear MMSE equalizers or Viterbi
detectors. The first-order statistics-based approach views
the information sequence as interference whereas in semib-
lind versions it is exploited to enhance channel estimation
and information sequence detection.

Notation: Superscripts H, T and † denote the complex
conjugate transpose, the transpose and the Moore-Penrose
pseudo-inverse operations, respectively. δ(τ) is the Kro-
necker delta and IN is the N × N identity matrix. The
symbol ⊗ denotes the Kronecker product.

2. FIRST-ORDER STATISTICS-BASED
SOLUTION OF [11]

Assume the following:

(H1) The information sequence {b(n)} is zero-mean, white
with E{|b(n)|2} = 1.

(H2) The measurement noise {v(n)} is nonzero-mean
(E{v(n)} = m), white, uncorrelated with {b(n)}, with
E{[v(n+τ)−m][v(n)−m]H} = σ2

vINδ(τ). The mean
vector m is unknown.

(H3) The superimposed training sequence c(n) = c(n+mP )
∀m, n is a non-random periodic sequence with period
P .

By (H3), we have cm := 1
P

∑P−1

n=0
c(n)e−jαmn,

c(n) =

P−1∑
m=0

cmejαmn ∀n, αm := 2πm/P. (4)

The coefficients cm’s are known at the receiver since {c(n)}
is known. We have

E{y(n)} =

P−1∑
m=0

[
L∑

l=0

cmh(l)e−jαml

]
︸ ︷︷ ︸

=:dm

ejαmn + m. (5)
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The sequence E{y(n)} is periodic with cycle frequencies
αm, 0 ≤ m ≤ P − 1. A mean-square (m.s.) consistent

estimate d̂m of dm, for αm �= 0, follows as

d̂m =
1

T

T∑
n=1

y(n)e−jαmn. (6)

As T → ∞, d̂m → dm m.s. if αm �= 0 and d̂0 → d0 + m
m.s. if αm = 0.

It is established in [11] that given dm for 1 ≤ m ≤ P −1,
we can (uniquely) estimate h(l)’s if P ≥ L + 2, αm �= 0,
and cm �= 0 ∀m �= 0. Since m is unknown, we will omit the
term m = 0 for further discussion. Define

V :=

⎡⎢⎢⎣
1 e−jα1 · · · e−jα1L

1 e−jα2 · · · e−jα2L

...
...

...
...

1 e−jαP−1 · · · e−jαP−1L

⎤⎥⎥⎦
(P−1)×(L+1)

, (7)

H :=
[

hH(0) hH(1) · · · hH(L)
]H

, (8)

D :=
[

dH
1 dH

2 · · · dH
P−1

]H
, (9)

C := (diag{c1, c2, · · · , cP−1}V)︸ ︷︷ ︸
=:V

⊗IN . (10)

Omitting the term m = 0 and using the definition of dm

from (5), it follows that

CH = D. (11)

It is shown in [11] that if P − 1 ≥ L + 1 and αi’s are
distinct, rank(C) = N(L + 1); hence, we can determine

h(l)’s uniquely. Define D̂ as in (9) with dm’s replaced with

d̂m’s. Then we have the channel estimate

Ĥ = (CHC)−1CHD̂. (12)

.
3. ITERATIVE ENHANCEMENT

The first-order statistics-based approach of Sec. 2 views the
information sequence as interference. Since the training and
information sequences of a given user pass through identi-
cal channel, this fact can be exploited to enhance channel
estimation performance via a semiblind approach. This is
the objective of this section.

Suppose that we have collected M − L samples of the
observation Y = [yT (M − 1), · · · ,yT (L)]T . We then have
the following linear model (ṽ(n) := v(n) − m)

Y = T (s)

⎡⎣ h(0)
...

h(L)

⎤⎦
︸ ︷︷ ︸

=:g

+

⎡⎣ ṽ(M − 1)
...

ṽ(L)

⎤⎦
︸ ︷︷ ︸

=:Ṽ

+

⎡⎣ m
...
m

⎤⎦
︸ ︷︷ ︸

=:M

(13)

where V = Ṽ +M is a column-vector consisting of samples
of noise {v(n)}, g is the vector of the channel parameters,

T (s) :=

[
s(M − 1)IN · · · s(M − L − 1)IN

Block Hankel Matrix
s(L)IN · · · s(0)IN

]
(14)

and a block Hankel matrix has identical block entries on
its block antidiagonals. In conventional training, we know
(and have time-synchronization with) s(n) = c(n) for n =

0, 1, · · · , Mt−1. In this case a least-squares (also maximum
likelihood (ML) in white Gaussian noise) channel estimate
is given by (set M = Mt and m = 0 in (13))

ĝ = T †(c)Y = (T H(c)T (c))−1T H(c)Y. (15)

In our proposed iterative, superimposed training-based
method we follow the following steps:

1) a) Use (12) to estimate the channel using the first-
order (cyclostationary) statistics of the observa-

tions. Denote the channel estimate by ĝ(1) and

ĥ(l). In this method {c(n)} is known and {b(n)}
is regarded as interference.

b) Design a linear minimum mean-square error
(LMMSE) equalizer of length Le and equalization
delay d using the estimated channel.

c) Define (recall (1) and (2))

ỹ(n) := y(n)−
L∑

i=0

ĥ(i)c(n−i)−m̂ ≈
L∑

i=0

h(i)b(n−i)+ṽ(n)

(16)

m̂ := (1/T )

T∑
n=1

[y(n) −
L∑

i=0

ĥ(i)c(n − i)]. (17)

Equalize the channel by applying the LMMSE

equalizer to {ỹ(n)} to estimate {b(n)} as {b̂(n)}.
Quantize {̂b(n)} into {b̃(n)} with the knowledge of
the symbol alphabet (hard decisions).

2) a) Substitute s̃(n) = b̃(n)+c(n) for s(n) in (1) and use
the corresponding formulation in (13) to estimate

the channel g and mean m as (Ỹ := Y − M̂)

ĝ(2) = T †(̃s)Ỹ = (T H (̃s)T (̃s))−1T H (̃s)Ỹ , (18)

m̂(2) := (1/T )

T∑
n=1

[y(n)−
L∑

i=0

ĥ(2)(i)c(n−i)]. (19)

b) Design a linear MMSE equalizer of length Le and
equalization delay d using the estimated channel
ĝ(2) as in Step 1b.

c) Repeat Step 1c using the results of Steps 2a, 2b.

3) Step 2 provides one iteration of our proposed iterative
method. Repeat a few times if so desired.

Note that in Step 1a, the information sequence is treated
as interference whereas in Step 2, it is exploited (along with
the superimposed training) to further improve the results,
leading to a semi-blind approach.

3.1. Simulation Results: LMMSE Equalizer
The results of a simulation example are shown in Figs. 1–2
for a random frequency-selective Rayleigh fading channel.
We took N = 1 and L = 2 in (1) with h(l) complex-valued
(independent real and imaginary parts), mutually indepen-
dent for all l, zero-mean unit variance Gaussian. Additive
noise was zero-mean complex white Gaussian. The SNR
refers to the energy per bit over one-sided noise spectral
density with both information and superimposed training
sequence counting toward the bit energy. Information se-
quence as well as superimposed training was binary. We
took the superimposed training sequence period P = 7 in
(H3). The average transmitted power in c(n) (scaled bi-
nary) was 0.2 of the power in b(n) – a small penalty in
SNR. There was no loss in information rate. Linear MMSE
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equalizer of length 11 bits and equalization delay of 5 bits
was used throughout. The normalized channel mean-square
error (NCMSE) is defined (before averaging over runs) as

NCMSE :=

[
2∑

l=0

‖ĥ(l) − h(l)‖2

][
2∑

l=0

‖h(l)‖2

]−1

. (20)

We also implemented a conventional (time-multiplexed)
training-based approach where the first 30 bits (±1) were
reserved for training and the remaining bits were informa-
tion bits. We see that (Figs. 1 and 2) iterated enhancement
is competitive with conventional training at lower SNR’s
(the “practical range”). Compared to conventional train-
ing there is no loss in information rate when superimposed
training is used. Furthermore, we see that (Fig. 2) although
the channel estimation errors may be much lower for su-
perimposed training with iterated enhancement, because of
SNR penalty (power wasted in superimposed training), this
channel accuracy advantage does not necessarily translate
into a large BER advantage.
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 SISO system; Data 400*500; TIR=0.2; Linear equalizer 

conventional training: 30 bits in beginning
superimposed training: step 1
superimposed training: 1st iteration
superimposed training: 2nd iteration
superimposed training: 3rd iteration

Figure 1. BER: circle: estimate channel using superimposed
training and then design a linear MMSE equalizer; square: first
iteration specified by Step 2 (Sec. 3); triangle down: second it-
eration specified by Step 2; triangle up: third iteration speci-
fied by Step 2; dots: estimate channel using conventional time-
multiplexed training of length 30 bits and then design a linear
MMSE equalizer. Training-to-information symbol power ratio
=0.2 (-7 dB). Record length = 400 bits. Results based on 500
Monte Carlo runs.

4. DETERMINISTIC MAXIMUM
LIKELIHOOD (DML) APPROACH

In this section we consider joint channel and information
sequence estimation via an iterative DML approach. The
main objective is as in Sec. 3, namely, to consider a semi-
blind approach where the information sequence is not re-
garded as interference. Unlike the approach of Sec. 3 where
convergence to a desired solution (a local maximum of DML
function) is not guaranteed, here we have guaranteed con-
vergence to a local maximum. Furthermore, if we initial-
ize with our superimposed training-based solution, one is
guaranteed the global extremum (minimum error probabil-
ity sequence estimator) if the superimposed training-based
solution is “good.”

Consider (1), (2) and (13). Under the assumption of
white Gaussian measurement noise, consider the joint esti-
mators

{ĝ, ŝ, m̂} = arg

{
min
g,s,m

||Y − T (s)g −M||2
}

(21)

where
s := [s(M − 1), s(M − 2), · · · , s(0)]T (22)

and ŝ is the estimate of s. In the above we have followed a
deterministic ML (DML) approach assuming no statistical
model for the input sequences {s(n)}. Under white Gaus-
sian noise assumption, the DML estimators are obtained by
the nonlinear least-squares optimization (21). Fortunately,
the observation vector Y is linear in both the channel and
the input parameters individually. In particular, we have

Y = T (s)g + Ṽ + M︸ ︷︷ ︸
V

= C(g)s + Ṽ + M (23)

where

C(g) =

⎡⎣ h(0) · · · h(L)
. . .

. . .
h(0) · · · h(L)

⎤⎦ (24)

is the the so-called filtering matrix. We therefore have a sep-
arable nonlinear least-squares problem that can be solved
sequentially as (joint optimization w.r.t. g,m can be fur-
ther “separated”)

{ĝ, ŝ, m̂} = arg min
s

{min
g,m

||Y − T (s)g −M||2} (25)

= arg min
g,m

{min
s

||Y − C(g)s −M||2}. (26)
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 SISO system; Data 400*500; TIR=0.2; Linear equalizer 

conventional training 30: bits in beginning
superimposed training: step 1
superimposed training: 1st iteration
superimposed training: 2nd iteration
superimposed training: 3rd iteration

Figure 2. As in Fig. 1 except that NCMSE (normalized chan-
nel mean-square error) is shown.

The finite alphabet properties of the information se-
quences can also be incorporated into the deterministic
maximum likelihood methods. These algorithms, first pro-
posed by Seshadri [9] for SISO systems, iterate between
estimates of the channel and the input sequences. At iter-
ation k, with an initial guess of the channel g(k) and the
mean m(k), the algorithm estimates the input sequence s(k)

and the channel g(k+1) and mean m(k+1) for the next iter-
ation by

s(k) = arg min
s∈S

||Y − C(g(k))s −M(k)||2, (27)

g(k+1) = arg min
g

||Y − T (s(k))g −M(k)||2, (28)

m(k+1) = arg min
m

||Y − T (s(k))g(k+1) −M||2, (29)

where S is the (discrete) domain of s. The optimizations
in (28) and (29) are linear least squares problems whereas
the the optimization in (27) can be achieved by using the
Viterbi algorithm (VA) [8]. Since the above iterative pro-
cedure involving (27), (28) and (29) decreases the cost at
every iteration, one achieves a local minimum of the nonlin-
ear least-squares cost (local maximum of DML function).

We now summarize our DML approach:
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1) a) Use (12) to estimate the channel using the first-
order (cyclostationary) statistics of the observa-

tions. Denote the channel estimates by ĝ(1) and

ĥ(l). Estimate the mean via (17) as m̂(1).
b) Design a Viterbi sequence detector to estimate

{s(n)} as {s̃(n)} using the estimated channel ĝ(1),

mean m̂(1) and cost (27) with k = 1. [Note that
knowledge of {c(n)} is used in s(n) = b(n) + c(n),
therefore, we are in essence estimating b(n) in the
Viterbi detector.]

2) a) Substitute s̃(n) for s(n) in (1) and use the corre-
sponding formulation in (13) to estimate the chan-
nel g and mean m as

ĝ(2) = T †(̃s)
[
Y − M̂(1)

]
, (30)

m̂(2) := (1/(M−L))

M−1∑
n=L

[y(n)−
L∑

i=0

ĥ(2)(i)s̃(n−i)].

(31)
b) Design a Viterbi sequence detector using the esti-

mated channel ĝ(2), mean m̂(2) and cost (27) with
k = 2, as in Step 1b.

3) Step 2 provides one iteration of (27)-(28). Repeat a
few times if so desired.

4.1. Simulation Results: Viterbi Algorithm (VA)
We now repeat the example of Sec. 3.1 but use the iterative
DML approach. [The various parameters are as in the ex-
ample of Sec. 3.1.] The results corresponding to Figs. 1–2
of Sec. 3.1 are now shown in Figs. 3–4. The results based
on VA are superior to that based on linear MMSE equaliz-
ers. The comments made regarding Figs. 1–2 apply to Figs.
3–4 also. [In Figs. 3–4 we display results for two types of
conventional training sequences: 30 bits in the beginning or
30 bits in the middle; for time-invariant systems, one does
not expect any differences.]

5. CONCLUSIONS

Approach of [11] to SIMO channel estimation using super-
imposed training sequences (hidden pilots) and first-order
statistics was extended to semiblind versions thereof. The
results were illustrated via a simulation example involving
frequency-selective Rayleigh fading. The proposed meth-
ods are competitive with the conventional training method
without incurring any information rate loss.
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 SISO system; Data 400*500; TIR=0.2; Viterbi algorithm

conventional training: 30 bits in beginning
conventional training: 30 bits in middle
superimposed training: step 1
superimposed training: 1st iteration

Figure 3. BER: circle: estimate channel using superimposed
training and then design a Viterbi detector; square: first itera-
tion specified by Step 2 (Sec. 4); dots: estimate channel using
conventional time-multiplexed training of length 30 bits in the
beginning and then design a Viterbi detector; dot-dashed: es-
timate channel using conventional time-multiplexed training of
length 30 bits in the middle and then design a Viterbi detec-
tor. Training-to-information symbol power ratio =0.2 (-7 dB).
Record length = 400 bits. Results based on 500 Monte Carlo
runs.
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 SISO system; Data 400*500; TIR=0.2; Viterbi algorithm

conventional training: 30 bits in beginning
conventional training: 30 bits in middle
superimposed training: step 1
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Figure 4. As in Fig. 3 except that NCMSE (normalized chan-
nel mean-square error) is shown.
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