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ABSTRACT

We consider a block fading frequency selective multi-input multi-
output (MIMO) channel in additive white Gaussian noise (AWGN).
The channel input is a training vector superimposed on a linearly
precoded vector of Gaussian symbols. To achieve a better perfor-
mance over the conventional least-squares (LS), we utilize the lin-
ear mean square error (LMMSE) symbol estimate to improve the
initial LS estimate and update the symbol estimation accordingly.
We provide the guidelines to design training which minimizes the
MSE of the initial LS estimate.

1. INTRODUCTION

Precoding is an effective tool to facilitate estimation and equaliza-
tion for time and/or frequency selective channels. In fact, as shown
in [1] and the references therein, the redundancy introduced by the
precoder can be exploited to guarantee the symbol recovery in the
absence of noise and to blindly estimate deterministic frequency
selective single-input single-output (SISO) channels up to a scale.
To acquire the channel state information (CSI) without ambiguity
training is required.

Superimposed training technique which consists in adding a
known training sequence to the unknown data sequence at the
transmitter, is utilized in [2] for the purpose of channel estimation.
By construction, there is no increase in the bandwidth. Affine pre-
coding schemes [3] enjoy the benefits of both linear precoding and
training.

For frequency selective SISO channels [5] designed affine pre-
coders which decouple channel estimation from symbol detection
and optimized the LS channel estimator. The class of affine pre-
coders (� , �) which admit the decoupling, satisfies a special form
of orthogonality [5].

For block fading frequency selective MIMO channels, [4] we
derived the CRB and we found that satisfying an orthogonality
constraint analogous to [5] is indeed a sufficient condition to re-
duce the CRB. After imposing the orthogonality constraint to the
CRB, the CRB is reduced to two terms where the first term de-
pends on the training �, whereas the second one depends on the
precoder � , but not on the training.As we will show in this paper,
there is a substantial gap between the CRB and the LS estimate
of the channel. The interesting results shown in the following are
that by using an “orthogonal design” for (� , �) w can fill the gap
in the estimation performance at SNR � 1 by iteratively perform-
ing symbol estimations and channel estimation in a turbo fashion.
However, such gains are not attained if the design of (� , �) does
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not satisfy the orthogonality condition. The importance of the or-
thogonality condition motivates us to investigate designs that sat-
isfy it. These designs have not been studied for the MIMO channel.

Notation: Boldface upper and lower cases denote matrices
and column vectors respectively. The tr(�) is trace of �. The
column vector formed by stacking vertically the columns of � is
� = vec(�). �M is the identity matrix of size M . ∆ii is a
K × K matrix whose all elements are zeros, except the ii-th ele-
ment which is one. ⊗ is the Kronecker product. The (i, j) entry of
� is indicated with [�]ij . diag(�) is a diagonal matrix whose di-
agonal elements are the components of �. Complex conjugate,
Hermitian, transpose, pseudoinverse and expectation operations
are represented by (.)∗, (.)H , (.)T , (.)†, E{.} respectively.

2. SYSTEM MODEL

The system considered has K transmit and R receive antennas. We
assume a block fading model where P is the coherence time of the
channel, i.e., the equivalent discrete-time impulse response of the
channel does not change during the transmission of P snapshots.
In our setup The channel has finite memory L. The information se-
quence �[n] is parsed into blocks of size N , namely �i. Each block
is precoded by a tall KP × N precoding matrix � . An KP × 1
training vector �, which is known to the receiver, is added to the
precoding block ��i to obtain the transmitted data block �i =
��i+�. The PK×1 vector �i is obtained by stacking P transmit
snapshots�i := vec([�[iP ], . . . ,�[iP+P−1]]), where�[iP+p]
is the K ×1 (coded) symbol vector, emitted by the K transmit an-
tennas. For the mapping from �i to �i to be invertible, we require
� to be full column rank. Stacking M = P−L received snapshots
in an MR×1 vector �i := vec([�[iP+L], . . . ,�[iP+P−1]]), in
which we eliminated the first L vectors to cancel the inter-block in-
terference (IBI), we obtain �i = ��i, where� is an RM ×KP
block Toeplitz matrix with block components H[l] l = 0, . . . , L
where {H[l]}r,k is the l-th sample of the impulse response char-
acterizing the channel between the k-th transmitter and the r-th
receiver. We require N ≤ rank(�) ≤ min(KP, RM). The re-
ceived signal is 	i = �i + 
i where 
i ∼ N (0, σ2

nn�RM). Fur-
thermore, we assume that �i ∼ N (0, σ2

ss�N). and 
i and �i are
uncorrelated. Combining all, we obtain 	i = ���i +��+
i.
Without IBI, we assume that the resulting channel estimator op-
erates on a block-by-block basis and we omit the block index i.
We let � ∈ CKR(L+1) be the vector containing the channel coef-
ficients we wish to estimate � := vec

�
[H[0], . . . , H[L]]T

�
. To

simplify the CRB derivation we rewrite �� explicitly as a func-
tion of �. To this end we introduce a mapping Φ : � → X such
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that�� = X� where X := Φ(�) is defined as:

X :=

�
����

�R ⊗� (1,:)

�R ⊗� (2,:)

...
�R ⊗� (M,:)

�
���� (1)

in which� (i,:) is the i-th row of the M×K(L+1) block Toeplitz
structure matrix� :

� :=

�
����

�T [L] · · · �T [0]
�T [L + 1] · · · �T [1]

...
. . .

...
�T [P − 1] · · · �T [M − 1]

�
���� (2)

3. DETERMINISTIC CHANNEL CRB EXPRESSION

The channel CRB is the inverse of the complex Fisher information
matrix � c.

Lemma 1 [4] � c is given by:

� c = TH
�

−1
z T + σ4

ss�
H(�T ⊗�

−1
z )� (3)

in which [c.f.(1)-(2)]:

T = Φ(�)

�z = σ2
ss���

H
�

H + σ2
nn�RM

� = ��
H
�

H
�

−1
z ���

H

� =
�
vec(�1), . . . , vec(�(L+1)RK)

�

�i =
∂�

∂hi
i = 1, . . . , (L + 1)RK

Regarding the structure of � c, we can make two remarks:
Remark 1 : TH�−1

z T can be read as the inverse of the error
covariance of the LS channel estimation when the precoded sym-
bols’ contribution is purely increasing the noise level.

Remark 2 : �H(�T ⊗�−1
z )�, which is independent of the

training, is the contribution coming from the blind estimation com-
ponent. Indeed, this term quantifies the gain one can achieve by
extracting the channel information embedded in the term ��	.
The presence of this term testifies to the sub-optimality of the LS
channel estimation which is based on the training symbols only
[5], specially when this term is dominating, which occurs when-
ever most of the transmit signal energy is spent on the data.

4. DESIGN GUIDELINES: CRB CRITERION

We look for a family of (� , �) which provide us a lower tr(�−1
c )

than the others, independent of the underlying FIR MIMO channel.

Lemma 2 [4] The pair (� , �) which satisfy the following orthog-
onality constraint provides a lower tr(�−1

c ):

�
H
� i = 0 i = 1, 2, . . . , N (4)

where � and � i are defined according to (1)-(2) using � and 
 i

(the i-th column of � ). Under (4) � c reduces to:

� c = σ−2
nn THT + σ4

ss�
H(�T ⊗�

−1
z )� (5)

We wish to characterize the pairs (� , �) which satisfy (4).We
select our general design such that the matrix � and the vector �
incorporate cyclic prefix (CP) [4]. We define� := Ψ� , � := Ψ�
where Ψ is the CP-inducing matrix. Under the CP assumption, �
and � is will be block circulant matrices and can be diagonalized
using the fast Fourier transform (FFT) matrix.

4.1. Design of Affine Precoding With CP

Let W := exp(j2π/M), � be the M × M FFT matrix with
[� ]mn = M−1/2W−(m−1)(n−1) and�0:L denote the first L+1
columns of � . We can express � as � = �H∆t(�0:L ⊗
IK) where ∆t is an M × MK block diagonal matrix defined

as ∆t := diag[�̃
T
(1), �̃

T
(W ), · · · , �̃

T
(W M−1)] and �̃(z) :=�M−1

m=0 �[m]z−m is the Z transform of �. Similarly, we can es-
tablish the FFT-based diagonalization of � i and define 
̃ i(z) :=�M−1

m=0 
 i[m]z−m.

Lemma 3 A sufficient condition for (4) to be satisfied is that

�̃(W m)
̃
H

i (W m) = 0 for m = 0, 1, · · · , M − 1 and i =
1, . . . , N .

Suppose ∆t has m∗
0 ≤ M nonzero block entries. Let I0 be

the set of ordered indices containing these m∗
0 indices [5]:

I0 :=
	
qn| �̃(W q) �= 0, qn < qn+1, n = 0, . . . , m∗

0 − 1



The design in Lemma 3 offers degrees of freedom to optimize
m∗

0, �̃(W m), the fraction of the power allocated to the training
ζ (where ζ := ||�||2/P and P = ||�||2 = σ2

sstr(��
H) + ||�||2

is the total transmit power and is constant), and the position of the
pilot tones via I0. In Section 6 we exploit these degrees of free-
dom to design �which minimizes the MSE of an initial LS channel
estimator (Section 5).

Remark: For the frequency selective SISO channels, the con-
straint in Lemma 3 is necessary and sufficient to satisfy (4) [5].
Note that for the MIMO it is only a sufficient condition. In Section
7 we investigate whether the transmit diversity can be exploited to
design (� , �) which have common tones and still they maintain
the orthogonality constraint in (4).

5. TURBO CHANNEL AND SYMBOL ESTIMATION

To build the estimator, we confine ourselves to the affine precoders
with CP. Under the orthogonality constraint in (4) we have T†Fi =
0 for i = 1, . . . , N . Hence an initial LS channel estimator is given
by �̂0 = T†� where the MSE expression for the LS estimate is:

E{||�̂0 − �||2} = tr(T†T†H
) = tr

�
(THT)−1

�
(6)

(6) is minimized if and only if THT = c0�RK(L+1) or equiva-
lently � H

� = c0�K(L+1) for some nonzero constant c0 < ζ (
in particular ζ = c0 +

�L−1
l=0 ||�[l]|| ). The LLMSE symbol es-

timator is given by 	̂ = �sz�
−1
zz � where �sz = σ2

ss�
H�̂

H
.

Assuming that THT = c0�RK(L+1), 	 and �̃ are uncorrelated,
and E{�̃H} = σ2

nnT†,�zz is:

�zz = �̂(σ2
ss��

H + ��
H)�̂

H

+ c−1
0 (σ2

ss

N
i=1

FiF
H
i + (1 + 2σ2

nn)TTH)) + σ2
nn�
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The LLMSE symbol estimate can be incorporated in to the LS
channel estimate. Suppose the symbol estimation error is suffi-
ciently small. We may approximate the received vector as � ≈
A� + � where A :=

��N
i=1 Fi�̂(i) + T

�
from which we can

obtain an improved LS channel estimate �̂1 = A†�. The channel
estimation followed by symbol estimation can be performed iter-
atively to obtain enhanced symbol recovery. Note that �(i)s are
Gaussian RVs and �̂(i)s are soft estimates, hence this method is
not a decision directed method.

6. OPTIMAL DESIGN FOR PILOT TONES

In this Section, we provide the guidelines to design � such that T
or equivalently � is semi-unitary.

Lemma 4 Let Γt be the m∗
0 × K matrix whose rows are the

nonzero block entries of ∆t. � is full column rank if and only
if (i) M > m∗

0 ≥ K(L + 1), where the minimum redundancy
corresponds to m∗

0 = K(L + 1), and (ii) Γt is full column rank.

Let Θ(m) := �̃
∗
(W m)�̃

T
(W m) m ∈ I0 be an K × K matrix.

Substituting the FFT based diagonalized expression for � , we can
rewrite � H

� as the following:�
�����

�
m∈I0

Θ(m) . . .
�

m∈I0
W−mLΘ(m)�

m∈I0
W mΘ(m) . . .

�
m∈I0

W−m(L−1)Θ(m)
...

. . .
...�

m∈I0
W mLΘ(m) . . .

�
m∈I0

Θ(m)

�
�����
(7)

If Θ(m) = � ∀ m ∈ I0 were to hold, the set of conditions
established in Lemma 5 would have made � H

� identity.

Lemma 5 �
H
� is identity if and only if we select:

• M = m∗
0Q where Q is an integer.

• the spacing of the pilot tones to satisfy qn = q0 + Qp (qn ∈
I0) for some integer q0 ∈ [0, Q − 1] and integer p ∈
[0, m∗

0 − 1].

Under Lemma 5 the block components of � H
� reduces to:

	
m∈I0

W mlΘ(m)=

m∗
0−1	

n=0

wnlΘ(n) l ∈ [−L, L] (8)

where w = ej2π/m∗
0 and Θ(n) := �̃

∗
(wn)�̃

T
(wn). However

Θ(m) �= �, indeed its rank is one. We assume �̃(W m) m ∈
I0 to be a K × 1 canonical vector, e.g., at each pilot tone only
one transmitter transmits the training. To achieve the minimum
redundancy we assume m∗

0 = K(L + 1). We divide the m∗
0 pilot

tones into K groups, namely G1, . . . ,GK , such that each group Gk

contains L + 1 tones. Let Ik be the set of ordered indices of the
tones which belong to Gk:

Ik :=



u(k)
n | wn ∈ Gk, u(k)

n < u
(k)
n+1, n = 0, . . . , L

�

Furthermore, suppose the spacing of the tones belonging to Gk

satisfy u
(k)
n = u

(k)
0 + Kp for some integer u

(k)
0 ∈ [0, K −1] and

integer p ∈ [0, L]. We can simplify (8) to:

m∗
0−1	

n=0

wnlΘ(n) =

K	
k=1

∆kk

	
n∈Ik

wnl =

�
L�k l = 0
0 l �= 0

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

�
�
�
�

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �� � � � � � � � � � � � � �

� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
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� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
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� � � � � � � � � � � � �
� � � � � � � � � � � � �
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� � � � � � � � � � � � �
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� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
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� � � � � � � �
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� � � � � � � �
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spatial
frequencies

pilot tones

Fig.1 training design for m∗
0 = 10 and K = 5

which is the desired result. An alternative design for �̃(wn) is:

�̃(wn) = [ 1 ejnΩ ej2nΩ . . . ej(K−1)nΩ ]T (9)

where Ω := 2π/K. It is not difficult to verify:

m∗
0−1	

n=0

wnlΘ(n) = m∗
0δ(l)�K l = 0,±1, . . . ,±L

The design proposed in (9) has an interesting interpretation which
is illustrated through Fig.1 in which we assume m∗

0 = 10 and
K = 5. The x and y axes represent respectively n, the pilot tone
index, and nΩ, which we refer to it as spatial frequency. A shaded
square indicates that all transmitters transmit a particular pilot tone
simultaneously (indexed by n) focusing spatially the beam at angle
nΩ, the corresponding spatial frequency. Hence each pilot tone is
transmitted at an increasing orthogonal angle. Note that for the
canonical design, each pilot tone is transmitted only by one trans-
mitter and the training signal is transmitted over all angles.

7. PRECODER DESIGN

Since Lemma 3 is inconclusive as to wether � and � can share
pilot tones, in this Section we investigate whether it is possible to
load� and � on overlapping subcarriers, while we maintain (i) the
orthogonality between � and � [c.f.(4)], (ii) the proposed design
for the training in (9) (It can be shown that there is a tradeoff be-
tween using the canonical design for the training and satisfying the
orthogonality constraint when the training and precoder share the
pilot tones). We may rewrite the block components of � H

� i = 0
as:

m∗
0−1	

n=0

wnlΨ(wn) = 0K×K l = 0,±1, . . . ,±L (10)

where Ψ(wn) := �̃
∗
(wn)�̃

T

i (wn). We choose the K × 1 vector
�̃ i to be such that its k component is {�̃ i}k = ejnΩi,k . It can be
verified that (10) is satisfied if and only if:

• Ωi,q = 2πli,q/m∗
0;

• l − (L + 1)p + li,q �= 0

• −m∗
0 < l − (L + 1)p + li,q < m∗

0

We select li,q to be positive integer. Therefore the above set of
conditions is satisfied if 0 < li,q < m∗

0 − L. The above argument
verifies the existence of an orthogonal design for � and � in which
symbols and training are loaded on overlapping subcarriers.
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Fig. 1. MSE of the LS against the channel CRB for the nonorthog-
onal design
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Fig. 2. MSE of the LS against the channel tr(CRB) normalized by
the number of channel coefficients as ζ varies. for the orthogonal
design

8. NUMERICAL RESULTS

We set K = 2, R = 2, L = 3, σ2
ss = 1 σ2

hh = 1/(L +
1). The simulation results are averaged over 100 sets of indepen-
dent Rayleigh fading channels. Without loss of generality, we as-
sume that P = 1 and therefore the signal-to-noise ratio (SNR) is
SNR := −10log10σ

2
nn. For each SNR, � and � are scaled such

that the power constraint is satisfied. We set M = 24, N = 4.
To satisfy the orthogonality constraint in (4) we simply load � and
� on non-overlapping subcarriers. In particular, we select the de-
sign (iii) in [4]. Fig.1,2 compare the MSE of the initial and the
improved LS channel estimate against CRB (in dB) as a function
of SNR at ζ = 0.3 for two designs namely the orthogonal and the
non-orthogonal designs (to obtain the non-orthogonal case we only
change �̃1(1) and �̃2(1) to �1 and �2 respectively). While the ef-
fect of violating the orthogonality constraint in not significant for
the CRB, the MSE for the LS estimators have floor. Fig.3 com-
pares the performance of the initial and the improved LS against
the CRB as a function of ζ at SNR =10dB; whereas Fig.4 shows the
symbol MSE (in dB). While by increasing the training power we
improve tr(CRB), the symbol MSE achieves its minimum around
ζ = 0.6.

In summary we showed that the initial LS channel estimate can
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Fig. 3. The performance of the LS and the proposed iterative esti-
mator against CRB
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Fig. 4. The symbol MSE in dB

be improved using the LMMSE of the symbols. We proposed two
training designs which both minimize the MSE of the LS channel
estimator. In MIMO systems, we showed the existence of orthog-
onal designs for � and � in which symbols and training are loaded
on overlapping subcarriers.
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